Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Immunol ; 14: 1308539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187391

RESUMEN

Introduction: The transcription factor HELIOS is primarily known for its expression in CD4 regulatory T cells, both in humans and mice. In mice, HELIOS is found in exhausted CD8 T cells. However, information on human HELIOS+ CD8 T cells is limited and conflicting. Methods: In this study, we characterized by flow cytometry and transcriptomic analyses human HELIOS+ CD8 T cells. Results: These T cells primarily consist of memory cells and constitute approximately 21% of blood CD8 T cells. In comparison with memory HELIOS- T-BEThigh CD8 T cells that displayed robust effector functions, the memory HELIOS+ T-BEThigh CD8 T cells produce lower amounts of IFN-γ and TNF-α and have a lower cytotoxic potential. We wondered if these cells participate in the immune response against viral antigens, but did not find HELIOS+ cells among CD8 T cells recognizing CMV peptides presented by HLA-A2 and HLA-B7. However, we found HELIOS+ CD8 T cells that recognize a CMV peptide presented by MHC class Ib molecule HLA-E. Additionally, a portion of HELIOS+ CD8 T cells is characterized by the expression of CD161, often used as a surface marker for identifying TC17 cells. These CD8 T cells express TH17/TC17-related genes encoding RORgt, RORa, PLZF, and CCL20. Discussion: Our findings emphasize that HELIOS is expressed across various CD8 T cell populations, highlighting its significance beyond its role as a transcription factor for Treg or exhausted murine CD8 T cells. The significance of the connection between HELIOS and HLA-E restriction is yet to be understood.


Asunto(s)
Infecciones por Citomegalovirus , Antígenos HLA-E , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Factor de Necrosis Tumoral alfa , Factores de Transcripción/genética
2.
Hum Mutat ; 41(9): 1499-1506, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598510

RESUMEN

PITX1 is a homeobox transcription factor essential for hindlimb morphogenesis. Two PITX1-related human disorders have been reported to date: PITX1 ectopic expression causes Liebenberg syndrome, characterized by malformation of upper limbs showing a "lower limb" appearance; PITX1 deletions or missense variation cause a syndromic picture including clubfoot, tibial hemimelia, and preaxial polydactyly. We report two novel PITX1 missense variants, altering PITX1 transactivation ability, in three individuals from two unrelated families showing a distinct recognizable autosomal dominant syndrome, including first branchial arch, pelvic, patellar, and male genital abnormalities. This syndrome shows striking similarities with the Pitx1-/- mouse model. A partial phenotypic overlap is also observed with Ischiocoxopodopatellar syndrome caused by TBX4 haploinsufficiency, and with the phenotypic spectrum caused by SOX9 anomalies, both genes being PITX1 downstream targets. Our study findings expand the spectrum of PITX1-related disorders and suggest a common pattern of developmental abnormalities in disorders of the PITX1-TBX4-SOX9 signaling pathway.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Factores de Transcripción Paired Box/genética , Activación Transcripcional , Animales , Niño , Preescolar , Humanos , Recién Nacido , Masculino , Ratones Noqueados , Mutación Missense
3.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227665

RESUMEN

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Proteínas de Unión al ARN/genética , Trombocitopenia/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Regiones no Traducidas 5' , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 1 , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Radio (Anatomía)/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...