Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6960, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521826

RESUMEN

This work presents an outline of a detection system that employs the Compton spectrometer method to assess the non-linearity of scintillator light yield. A novel approach is introduced, leading to more accurate measurements through the separate determination of the intrinsic light output parameters and the non-linearity of the scintillators. Key features of this system include the use of a portable scintillation detector with three photomultiplier tubes for precise measurement of the average number of detected photoelectrons and the incorporation of recent advancements in correction techniques for accidental coincidences. The integration of digital acquisition, offline data analysis, and geometric adaptation reduces the time required to perform a measurement. The developed detector can simultaneously measure different timing properties, as well as the relative intensities following ionization excitation in a scintillator. The system's performance is demonstrated through measurements of the light yield dependence on the deposited energy for commercially available liquid, plastic, and inorganic scintillators. Such instrumentation serves as a valuable tool in the development of novel scintillating materials, including liquid or solid organic scintillators, inorganic scintillators, and composite scintillators for electron detection, in addition to traditional X-ray or γ -ray detection.

2.
Anal Chem ; 96(10): 3994-3998, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38349767

RESUMEN

Analytical chemistry has never yielded such a wealth of experimental data as it does today, and this exponential trend shows no sign of abating. We continually advance the capabilities of our instruments and conceive innovative concepts, all in a concerted effort to naturally push the boundaries of our understanding regarding intricate sample matrices. Spectroscopic imaging, in the broadest sense, is certainly the field where we observe this acceleration even more pronouncedly. Analytical chemistry swiftly grasped the significance of processing acquired data for comprehensive exploration through utilization of chemometrics or machine learning tools. One can assert today that chemometrics undeniably constitutes an integral facet in the advancement of an analytical approach. However, we are now faced with a new challenge, as the experimental data accumulated for certain analytical techniques are so vast and massive that exploring them with such tools has become unfeasible, and this is by no means a computational capacity issue. Analytical chemistry is far from being the sole field affected by this issue, and one could argue that others have grappled with it long before us, such as, for instance, social media, to name just one. The purpose of this paper is to demonstrate that such a domain, which may initially seem distant from our concerns, can offer novel tools capable of overcoming these barriers, even though we are not necessarily dealing with the same objects. More specifically, we delve into the clustering of over 10 million LIBS spectra acquired as part of an imaging experiment aimed at exploring a singular rock sample. This will serve to demonstrate that an open-source library developed by Meta (formerly known as Facebook) can enable us to conduct a comprehensive exploration of this sample, a feat deemed impossible with conventional data analysis approaches.

3.
Adv Mater ; 36(25): e2309410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235521

RESUMEN

The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA