Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068950

RESUMEN

In addition to brain disorders, which constitute a devastating consequence of prenatal alcohol exposure (PAE), eye development is also significantly affected. Given that the retina is a readily accessible part of the central nervous system, a better understanding of the impact of ethanol on retinal development might provide ophthalmological landmarks helpful for early diagnosis of fetal alcohol syndrome. This study aimed to provide a fine morphometric and cellular characterization of the development of retinal microvasculature and neurovascular interactions in a mouse model of fetal alcohol spectrum disorder (FASD). The data revealed that PAE impaired superficial vascular plexus development. In particular, progression of the vascular migration front was significantly decreased in PAE retinas, supporting a delay in plexus progression. Moreover, a significant decrease in the vessel density and number of perforating vessels was quantified in PAE mice, supporting less angiogenesis. The present study provides also the first evidence of a close interaction between migrating calretinin-positive interneurons and perforating microvessels in the inner nuclear layer of the developing retina. This neurovascular association was significantly impaired by PAE. Moreover, projections of amacrine cells were abnormally distributed and densified in stratum S1 and S2. In humans, comparison of a five-month-old control infant with a three-month-old alcohol-exposed case revealed a similar mispositioning of calretinin-positive interneurons. This opens new research avenues regarding a neurovascular contribution in the deleterious effects of alcohol in the developing retina and support that ophthalmological examination could become a promising approach for early detection of alcohol-exposed infants presenting with neurovascular brain defects.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Lactante , Ratones , Embarazo , Calbindina 2 , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Interneuronas , Microvasos , Retina
2.
Neurobiol Dis ; 145: 105074, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890773

RESUMEN

In utero alcohol exposure can induce severe neurodevelopmental disabilities leading to long-term behavioral deficits. Because alcohol induces brain defects, many studies have focused on nervous cells. However, recent reports have shown that alcohol markedly affects cortical angiogenesis in both animal models and infants with fetal alcohol spectrum disorder (FASD). In addition, the vascular system is known to contribute to controlling gamma-aminobutyric acid (GABA)ergic interneuron migration in the developing neocortex. Thus, alcohol-induced vascular dysfunction may contribute to the neurodevelopmental defects in FASD. The present study aimed at investigating the effects of alcohol on endothelial activity of pial microvessels. Ex vivo experiments on cortical slices from mouse neonates revealed that in endothelial cells from pial microvessels acute alcohol exposure inhibits both glutamate-induced calcium mobilization and activities of matrix metalloproteinase-9 (MMP-9) and tissue plasminogen activator (tPA). The inhibitory effect of alcohol on glutamate-induced MMP-9 activity was abrogated in tPA-knockout and Grin1flox/VeCadcre mice suggesting that alcohol interacts through the endothelial NMDAR/tPA/MMP-9 vascular pathway. Contrasting with the effects from acute alcohol exposure, in mouse neonates exposed to alcohol in utero during the last gestational week, glutamate exacerbated both calcium mobilization and endothelial protease activities from pial microvessels. This alcohol-induced vascular dysfunction was associated with strong overexpression of the N-methyl-d-aspartate receptor subunit GluN1 and mispositioning of the Gad67-GFP interneurons that normally populate the superficial cortical layers. By comparing several human control fetuses with a fetus chronically exposed to alcohol revealed that alcohol exposure led to mispositioning of the calretinin-positive interneurons, whose density was decreased in the superficial cortical layers II-III and increased in deepest layers. This study provides the first mechanistic and functional evidence that alcohol impairs glutamate-regulated activity of pial microvessels. Endothelial dysfunction is characterized by altered metalloproteinase activity and interneuron mispositioning, which was also observed in a fetus with fetal alcohol syndrome. These data suggest that alcohol-induced endothelial dysfunction may contribute in ectopic cortical GABAergic interneurons, that has previously been described in infants with FASD.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/enzimología , Trastornos del Espectro Alcohólico Fetal/patología , Interneuronas/patología , Neurogénesis/efectos de los fármacos , Piamadre/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/toxicidad , Células Endoteliales/enzimología , Etanol/toxicidad , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/patología , Humanos , Interneuronas/efectos de los fármacos , Metaloproteasas/metabolismo , Ratones , Piamadre/enzimología , Embarazo , Efectos Tardíos de la Exposición Prenatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...