Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39364577

RESUMEN

Valproic acid (VA) is a widely used drug for the treatment of diseases affecting the central nervous system. Due to its epigenetic modulatory potential, it has been studied for possible therapeutic application in anticancer therapies. However, the VA exhibits different side effects in its application. Thus, synthetic coordination complexes with valproate can generate promising candidates for new active drugs with reduced toxicity. In this sense, we investigated the genotoxic and mutagenic potential of the sodium valproate and of the mixed ternary mononuclear Mg complex based on VA with 1,10-phenanthroline (Phen) ligand - [Mg (Valp)2Phen], in Saccharomyces cerevisiae and V79 cells. The MTT and clonal survival assays in V79 cells indicated that the Mg complex has higher cytotoxicity than sodium valproate. A similar cytotoxicity profile is observed in yeast. This fact is possibly due to the intercalation capacity of [Mg(Valp)2Phen], inducing DNA strand breaks, as observed in the comet assay and micronucleus test. In this sense, members of the NER, HR, NHEJ and TLS repair pathways are required for the repair of DNA lesions induced by [Mg(Valp)2Phen]. Interestingly, BER proteins apparently increase the cytotoxic potential of the drug. Furthermore, the [Mg(Valp)2Phen] showed higher cytotoxicity in V79 cells and yeast when compared to sodium valproate indicating applicability as a cytotoxic agent.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34454693

RESUMEN

The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.


Asunto(s)
Cobre/farmacología , Reparación del ADN/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Fenantrolinas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Ácido Valproico/farmacología , ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Ligandos , Mutación/efectos de los fármacos , Recombinación Genética/efectos de los fármacos
3.
J Inorg Biochem ; 206: 111046, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32114142

RESUMEN

In the search for new drugs, strategies such as bioisosterism have been evidenced, in which the modification of molecules is already known to be active. Thus, metal complexes of known drugs have been highlighted, with examples of significant improvements in therapeutic efficacy. In this way, this work aimed at the synthesis of new zinc complexes with nonsteroidal anti-inflammatory drugs (NSAIDs), as well as the chemical characterization and the previous toxicity by cytotoxicity with Artemia salina, and evaluating the ability of these compounds to interact with DNA. As result, two new zinc II ternary complexes containing the NSAIDs diclofenac (Diclof) and ibuprofen (Ibup) and nicotinamide neutral linker (Nic) were obtained by the two-step solvent metal-ligand complexation method. Molecular structures were determined by NMR, FTIR, HR-MS, UV-Vis and X-ray diffraction, which demonstrated that both complexes are binuclear systems of general formula [Zn2(R-COO-)4(Nic)2]. Plasmidial DNA breakdown capacities were evaluated by producing single and double breaks (DNA FII and FIII) from plasmid incubation with complex solutions in the concentration range 0 to 400 µmol·L-1 in experiments with the presence and absence of light. Both experiments did not show significant differences (P ≤ 0.05) in induced DNA cleavage activity between the maximum study concentrations (400 µmol·L-1) and the negative controls for both complexes. The types of complex 1 and 2 interactions with the secondary DNA structure were determined by titrating a CT-DNA solution with complex solutions and monitored by circular dichroism spectrometry. The results showed that both complexes interact with the grooves of the secondary structure of CT-DNA by electrostatic attraction, but without evidence of alteration in the primary structure. Acute toxicity tests against Artemia salina showed that both complexes did not produce lethality >10% of the population up to a maximum concentration of 1200 µg·mL-1 within an exposure interval of 24 h. Thus, two new compounds were synthesized, characterized and had their previous toxicities determined. These compounds are promising new drugs, with the next step being evaluations of their activity.


Asunto(s)
Artemia/crecimiento & desarrollo , Complejos de Coordinación/toxicidad , Inhibidores de la Ciclooxigenasa/toxicidad , Diclofenaco/química , Ibuprofeno/química , Niacinamida/química , Zinc/química , Animales , Antiinflamatorios no Esteroideos , Artemia/efectos de los fármacos , Complejos de Coordinación/química , Cristalografía por Rayos X , Inhibidores de la Ciclooxigenasa/química , División del ADN , Estructura Molecular , Pruebas de Toxicidad Aguda
4.
Microbiol Res ; 214: 74-82, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30031483

RESUMEN

The indiscriminate use of antibiotics is causing an increase in bacterial resistance, complicating therapeutic planning. In this context, natural products have emerged as major providers of bioactive compounds. This work performs a bioguided study of Brazilian red propolis to identify compounds with antibacterial potential and to evaluate their cytotoxicity against non-tumour cells. Using bioguided fractionation performed with the hydroalcoholic extract of red propolis from Alagoas, it was possible to obtain subfractions with remarkable bacteriostatic activity compared with the precursor fractions. The SC2 subfraction was highlighted and showed the best results with minimal inhibitory concentrations (MICs) of 56.75, 28.37, 454.00, and 227.00 µg mL-1 against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, respectively. However, this study also revealed a cytotoxic effect against the non-tumour Vero cell line. Furthermore, through chemical analyses using high resolution mass spectrometry, high performance liquid chromatography with UV detection, and gas chromatography coupled to mass spectrometry, we verified the presence of important marker compounds in the fractions and extracts, including formononetin (m/z 267.0663), biochanin A (m/z 283.0601), and liquiritigenin (m/z 255.0655). The results obtained in this study suggest an important antibacterial potential of red propolis subfractions. In this context, the bioguided fractionation has been a useful process, due to its ability to isolate and concentrate active compounds in a logical and rational way.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Própolis/química , Animales , Antibacterianos/toxicidad , Bacterias/crecimiento & desarrollo , Productos Biológicos/toxicidad , Brasil , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Células Vero
5.
Epilepsy Res ; 139: 171-179, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29371041

RESUMEN

Valproic acid (VPA) is an antiepileptic drug (AED) that has the broadest spectrum across all types of seizures and epileptic syndromes. Unfortunately, approximately 30% of epileptic patients are refractory to the classical AED. Metal ions have been frequently incorporated into pharmaceuticals for therapeutic or diagnostic purposes and research. In this preliminary study, we assess the embryo toxicity and the anticonvulsant activity of 4 novel metallodrugs, with Zn+2 and Cu+2, a derivative of valproic acid and the N-donor ligand in an adult zebrafish epileptic seizure model induced by pentylenetetrazole. The most toxic complex was [Cu(Valp)2Bipy], in which the LC50 was 0.22 µM at 48 h post fertilization (HPF) and 0.12 µM at 96 HPF, followed by [Zn(Valp)2Bipy] (LC50 = 10 µM). These same metallodrugs ([Cu(Valp)2Bipy] 10 mM/kg and [Zn(Valp)2Bipy] 30 mM and 100 mM/kg) displayed superior activity, thus reducing the seizure intensity by approximately 20 times compared to sodium valproate (175 mM/kg). Overall, [Cu(Valp)2Bipy] showed the best anticonvulsant effects. However, because of the toxicity of copper, [Zn(Valp)2Bipy] is considered the most promising anticonvulsant for future studies.


Asunto(s)
Anticonvulsivantes/farmacología , Cobre/farmacología , Teratógenos/farmacología , Ácido Valproico/farmacología , Compuestos de Zinc/farmacología , Animales , Anticonvulsivantes/química , Anticonvulsivantes/toxicidad , Cobre/química , Cobre/toxicidad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Epilepsia/tratamiento farmacológico , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/toxicidad , Pentilenotetrazol , Datos Preliminares , Convulsiones/tratamiento farmacológico , Teratógenos/química , Teratógenos/toxicidad , Ácido Valproico/química , Ácido Valproico/toxicidad , Pez Cebra , Compuestos de Zinc/química , Compuestos de Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA