Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203309

RESUMEN

This article focuses on the influence of generated electromagnetic noise (energy) during the micro-perforation process. This study aims to investigate the critical parameters and effects of using laser technology in the processing of textile materials for airbags. Different levels of electromagnetic noise and material thicknesses were investigated to ensure the quality of manufactured parts and the best component performance. A factorial analysis (DOE) was developed to evaluate the influence of electromagnetic noise levels over pull test results and its effect on the micro-perforation process. The overall inferential analysis concludes a significant influence of the noise levels on micro-perforation processing. The detailed analysis suggests that 1.2 V is an optimal level of electromagnetic noise where the material maintains its mechanical properties in a more predictable and consistent manner. Additionally, the factorial design provides significant evidence for an interaction and main effects' influences of analyzed factors. The obtained results in this study have demonstrated that monitoring and controlling the noise level have beneficial effects over the laser processing. This ensures that the safety aspect of the produced parts is entirely upheld and protected. Also, this research contributes to improving the manufacturing process and ensures that high-quality products are obtained, being suitable for use in sensitive applications such as automotive airbags.

2.
Materials (Basel) ; 16(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37374432

RESUMEN

This paper presents a study of the deformations of the birch veneer layer of plywood composed of veneer sheets, each with a thickness of 1.4 mm. Displacements in the longitudinal and transverse directions were analyzed in each layer of veneer from the composition of the board. Cutting pressure was applied to the surface equal to the diameter of the water jet, located in the center of the laminated wood board. Finite element analysis (FEA) does not study the breaking of the material or its elastic deformation, but only what happens from a static point of view when maximum pressure acts on the board, which causes detachment of the veneer particles. The results of the finite element analysis indicate maximum values of 0.0012 mm in the longitudinal direction of the board located in the proximity of the application of the maximum force of the water jet. Additionally, in order to analyze the recorded differences between both longitudinal and transversal displacements, estimation of statistical parameters with 95% confidence intervals (CI) was applied. The comparative results indicate that the differences are not significant for the displacements under study.

3.
ScientificWorldJournal ; 2015: 296762, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167524

RESUMEN

Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA