Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
J AOAC Int ; 106(3): 725-736, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36413047

RESUMEN

BACKGROUND: Frequent testing for Legionella concentration in water is required by most health risk monitoring organizations worldwide. Domestic hot water and cooling tower water networks must be regularly controlled to prevent Legionnaires' disease, a potentially deadly lung infection. MICA Legionella is the fastest culture-based detection method for all serogroups of Legionella pneumophila, with automatic enumeration in 48 h and no need for confirmation. OBJECTIVE: This study compares the performance and robustness of MICA Legionella with the reference method ISO 11731:2017 for the enumeration of culturable L. pneumophila. METHODS: MICA Legionella and ISO 11731:2017 results were compared for domestic hot water and cooling tower water. Inclusivity and exclusivity were tested on reference and environmental strains. Ruggedness, lot-to-lot consistency, and stability of the reagents kit were also studied. RESULTS: Enumeration of L. pneumophila by MICA Legionella was statistically equivalent to ISO 11731:2017 in both matrixes. In cooling tower waters, MICA Legionella showed better sensitivity than ISO 11731:2017. It presented a 94% sensitivity and a 97% specificity. CONCLUSION: MICA Legionella is a highly sensitive and specific method for culturable L. pneumophila enumeration. It presents, in 48 hours, equivalent or better results than ISO 11731:2017. Its protocol is robust to variations. Its reagents kit is stable for up to 18 months. HIGHLIGHTS: MICA Legionella is a robust and reliable method for the enumeration of culturable L. pneumophila in domestic and cooling tower water. It reduces significantly the number of sample pretreatments required in ISO 11731:2017. Automatic identification and enumeration of L. pneumophila microcolonies eliminates the requirement to have skilled analysts and limits the results variability. It also greatly reduces the time to results to 48 h instead of 7-10 days with ISO 11731:2017 while providing statistically equivalent results.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Microbiología del Agua , Enfermedad de los Legionarios/prevención & control , Agua
3.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269644

RESUMEN

Transient receptor potential canonical (TRPC) channels are membrane proteins involved in regulating Ca2+ homeostasis, and whose functions are modulated by G protein-coupled receptors (GPCR). In this study, we developed bioluminescent resonance energy transfer (BRET) biosensors to better study channel conformational changes following receptor activation. For this study, two intramolecular biosensors, GFP10-TRPC7-RLucII and RLucII-TRPC7-GFP10, were constructed and were assessed following the activation of various GPCRs. We first transiently expressed receptors and the biosensors in HEK293 cells, and BRET levels were measured following agonist stimulation of GPCRs. The activation of GPCRs that engage Gαq led to a Gαq-dependent BRET response of the functional TRPC7 biosensor. Focusing on the Angiotensin II type-1 receptor (AT1R), GFP10-TRPC7-RLucII was tested in rat neonatal cardiac fibroblasts, expressing endogenous AT1R and TRPC7. We detected similar BRET responses in these cells, thus validating the use of the biosensor in physiological conditions. Taken together, our results suggest that activation of Gαq-coupled receptors induce conformational changes in a novel and functional TRPC7 BRET biosensor.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Técnicas Biosensibles , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles/métodos , Células HEK293 , Humanos , Ratas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
4.
Am J Transplant ; 22(6): 1691-1698, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181996

RESUMEN

The CD86 occupancy assay has been developed to measure the number of CD86 molecules unbound to belatacept, but its association with clinical outcomes has not been assessed yet. All kidney transplant patients switched to belatacept in our center between 2016 and 2018 were included. Blood samples were collected before each infusion for 1 year to assess CD86 occupancy by CD86 antibody cytometry staining on the surface of CD14+ monocytes. Results were expressed as the median fluorescence intensity (MFI) value of CD86 staining. At each infusion, the MFIDay of infusion /MFIDay 0 ratio was calculated. Forty-one patients were consecutively included. After every 2-week infusion period, CD86 MFI ratio dropped from 1.00 to 0.73 [0.57-0.98], p = .07. However, this ratio progressively increased to 0.78 [0.53-1.13] at 1 year, which was not statistically different from pre-switch ratio, p = .4. Over the first year, the MFI ratio coefficient of variation was 31.58% [23.75-38.31]. MFI ratio was not different between patients with or without opportunistic infections: 0.73 [0.60-0.88] versus 0.80 [0.71-1.00], p = .2, or between patients with or without EBV DNAemia, p = .2. Despite previous in vitro results, the CD86 occupancy assay suffers from a high intra-individual variability and does not appear to be relevant to clinical outcomes.


Asunto(s)
Trasplante de Riñón , Abatacept/uso terapéutico , Anticuerpos , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Humanos , Inmunosupresores/uso terapéutico , Trasplante de Riñón/efectos adversos
5.
Sci Rep ; 11(1): 22770, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815457

RESUMEN

Sepsis is a prevalent life-threatening condition related to a systemic infection, and with unresolved issues including refractory septic shock and organ failures. Endogenously released catecholamines are often inefficient to maintain blood pressure, and low reactivity to exogenous catecholamines with risk of sympathetic overstimulation is well documented in septic shock. In this context, apelinergics are efficient and safe inotrope and vasoregulator in rodents. However, their utility in a larger animal model as well as the limitations with regards to the enzymatic breakdown during sepsis, need to be investigated. The therapeutic potential and degradation of apelinergics in sepsis were tested experimentally and in a cohort of patients. (1) 36 sheep with or without fecal peritonitis-induced septic shock (a large animal experimental design aimed to mimic the human septic shock paradigm) were evaluated for hemodynamic and renal responsiveness to incremental doses of two dominant apelinergics: apelin-13 (APLN-13) or Elabela (ELA), and (2) 52 subjects (33 patients with sepsis/septic shock and 19 healthy volunteers) were investigated for early levels of endogenous apelinergics in the blood, the related enzymatic degradation profile, and data regarding sepsis outcome. APLN-13 was the only one apelinergic which efficiently improved hemodynamics in both healthy and septic sheep. Endogenous apelinergic levels early rose, and specific enzymatic breakdown activities potentially threatened endogenous apelin system reactivity and negatively impacted the outcome in human sepsis. Short-term exogenous APLN-13 infusion is helpful in stabilizing cardiorenal functions in ovine septic shock; however, this ability might be impaired by specific enzymatic systems triggered during the early time course of human sepsis. Strategies to improve resistance of APLN-13 to degradation and/or to overcome sepsis-induced enzymatic breakdown environment should guide future works.


Asunto(s)
Apelina/metabolismo , Enzimas/metabolismo , Hemodinámica , Elastasa Pancreática/metabolismo , Proteolisis , Choque Séptico/patología , Anciano , Animales , Apelina/genética , Estudios de Casos y Controles , Catecolaminas/metabolismo , Heces , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Elastasa Pancreática/genética , Peritonitis/complicaciones , Pronóstico , Estudios Prospectivos , Ovinos , Choque Séptico/etiología , Choque Séptico/metabolismo
6.
FASEB J ; 35(5): e21544, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33819356

RESUMEN

Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Factores de Empalme Serina-Arginina/fisiología , Empalme Alternativo , Animales , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , RNA-Seq
7.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409568

RESUMEN

Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, Salmonella effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments. In particular, they allow the formation of tubules from the vacuole and their extension along the microtubule cytoskeleton, and thus promote membrane exchanges and nutrient supply. We have developed in vitro and in cellulo assays to better understand the specific role played by these two effectors in the recruitment and regulation of kinesin-1. Our results reveal a specific interaction between the two effectors and indicate that, contrary to what studies on infected cells suggested, interaction with PipB2 is sufficient to relieve the autoinhibition of kinesin-1. Finally, they suggest the involvement of other Salmonella effectors in the control of the activity of this molecular motor.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Salmonella enterica , Proteínas Bacterianas , Células HeLa , Humanos , Cinesinas/genética , Salmonella , Vacuolas
8.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118557, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31505169

RESUMEN

The p38 mitogen-activated protein kinase (MAPK) signaling pathway is essential for normal heart function. However, p38 also contributes to heart failure pathogenesis by affecting cardiomyocytes contractility and survival. To unravel part of the complex role of p38 in cardiac function, we performed an APEX2-based proximity assay in cultured neonatal rat ventricular myocytes and identified the protein interaction networks (interactomes) of two highly expressed p38 isoforms in the heart. We found that p38α and p38γ have distinct interactomes in cardiomyocytes under both basal and osmotic stress-activated states. Interestingly, the activated p38α interactome contains many RNA-binding proteins implicated in splicing, including the serine/arginine-rich splicing factor 3 (SRSF3). Its interaction with the activated p38α was validated by co-immunoprecipitation. The cytoplasmic abundance and alternative splicing function of SRSF3 are also both modulated by the p38 signaling pathway. Our findings reveal a new function for p38 as a specific regulator of SRSF3 in cardiomyocytes.


Asunto(s)
Empalme Alternativo/genética , Proteína Quinasa 14 Activada por Mitógenos/genética , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Sci Rep ; 8(1): 13605, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206251

RESUMEN

The ArfGAP with dual PH domains 1 (ADAP1) regulates the activation of the hypertrophic mitogen-activated protein kinase ERK1/2 pathway in non-cardiomyocytes. However, its role in cardiomyocytes is unknown. Our aim was to characterize the role of ADAP1 in the hypertrophic process of cardiomyocytes. We assessed the expression of ADAP1 in the hearts of adult and neonatal rats by RT-qPCR and Western blotting and showed that it is preferentially expressed in cardiomyocytes. Adenoviral-mediated ADAP1 overexpression in cultured rat neonatal ventricular cardiomyocytes limited their serum-induced hypertrophic response as measured by immunofluorescence microscopy. Furthermore, ADAP1 overexpression completely blocked phenylephrine- and Mek1 constitutively active (Mek1ca) mutant-induced hypertrophy in these cells. The anti-hypertrophic effect of ADAP1 was not caused by a reduction in protein synthesis, interference with the Erk1/2 pathway, or disruption of the fetal gene program activation, as assessed by nascent protein labeling, Western blotting, and RT-qPCR, respectively. An analysis of cultured cardiomyocytes by confocal microscopy revealed that ADAP1 partially re-organizes α-actinin into dense puncta, a phenomenon that is synergized by Mek1ca overexpression. Biotin labeling of cell surface proteins from cardiomyocytes overexpressing ADAP1 revealed that it reduces the surface expression of ß1-integrin, an effect that is strongly potentiated by Mek1ca overexpression. Our findings provide insights into the anti-hypertrophic function of ADAP1 in cardiomyocytes.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Hipertrofia/genética , Integrina beta1/genética , MAP Quinasa Quinasa 1/genética , Proteínas del Tejido Nervioso/genética , Actinina/genética , Animales , Animales Recién Nacidos , Antígenos de Superficie/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Síndrome de Deficiencia de Adhesión del Leucocito , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal/genética
10.
Phys Biol ; 15(2): 026003, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28980528

RESUMEN

Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded ('abnormal') proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called 'foci'. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química , Pliegue de Proteína , Cinética , Modelos Moleculares , Procesos Estocásticos
11.
PLoS One ; 11(8): e0159914, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27548064

RESUMEN

BACKGROUND: Anticipating the time to renal replacement therapy (RRT) in chronic kidney disease (CKD) patients is an important but challenging issue. Natriuretic peptides are biomarkers of ventricular dysfunction related to poor outcome in CKD. We comparatively investigated the value of B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) as prognostic markers for the risk of RRT in stage 4 and 5 CKD patients, and in foretelling all-cause mortality and major cardiovascular events within a 5-year follow-up period. METHODS: Baseline plasma BNP (Triage, Biosite) and NT-proBNP (Elecsys, Roche) were measured at inclusion. Forty-three patients were followed-up during 5 years. Kaplan-Meier analysis, with log-rank testing and hazard ratios (HR), were calculated to evaluate survival without RRT, cardiovascular events or mortality. The independent prognostic value of the biomarkers was estimated in separate Cox multivariate analysis, including estimated glomerular filtration rate (eGFR), creatininemia and comorbidities. RESULTS: During the first 12-month follow-up period, 16 patients started RRT. NT-proBNP concentration was higher in patients who reached endpoint (3221 ng/L vs 777 ng/L, p = 0.02). NT-proBNP concentration > 1345 ng/L proved significant predictive value on survival analysis for cardiovascular events (p = 0.04) and dialysis within 60 months follow-up (p = 0.008). BNP concentration > 140 ng/L was an independent predictor of RRT after 12 months follow-up (p<0.005), and of significant predictive value for initiation of dialysis within 60 months follow-up. CONCLUSIONS: Our results indicate a prognostic value for BNP and NT-proBNP in predicting RRT in stage 4 and 5 CKD patients, regarding both short- and long-term periods. NT-proBNP also proved a value in predicting cardiovascular events. Natriuretic peptides could be useful predictive biomarkers for therapeutic guidance in CKD.


Asunto(s)
Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Diálisis Renal , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/cirugía , Índice de Severidad de la Enfermedad
12.
PLoS One ; 10(6): e0127700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061695

RESUMEN

Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope.


Asunto(s)
Química Clic/métodos , Bacterias Gramnegativas/aislamiento & purificación , Separación Inmunomagnética/métodos , Azidas/análisis , Técnicas de Cultivo de Célula , Azúcares Ácidos/análisis
13.
Angew Chem Int Ed Engl ; 53(5): 1275-8, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24446310

RESUMEN

Legionella pneumophila is a pathogenic bacterium involved in regular outbreaks characterized by a relatively high fatality rate and an important societal impact. Frequent monitoring of the presence of this bacterium in environmental water samples is necessary to prevent these epidemic events, but the traditional culture-based detection and identification method requires up to 10 days. Reported herein is a method allowing identification of Legionella pneumophila by metabolic lipopolysaccharide labeling which targets, for the first time, a precursor to monosaccharides that are specifically present within the O-antigen of the bacterium. This new approach allows easy detection of living Legionella pneumophila, while other Legionella species are not labeled.


Asunto(s)
Legionella pneumophila/aislamiento & purificación , Lipopolisacáridos/química , Química Clic , Colorantes Fluorescentes/química , Legionella pneumophila/metabolismo , Lipopolisacáridos/metabolismo , Microscopía Confocal , Monosacáridos/química , Antígenos O/química , Antígenos O/metabolismo , Serotipificación
14.
Cell Microbiol ; 16(6): 878-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24320113

RESUMEN

Neisseria meningitidis is a bacterium responsible for severe sepsis and meningitis. Following type IV pilus-mediated adhesion to endothelial cells, bacteria proliferating on the cellular surface trigger a potent cellular response that enhances the ability of adhering bacteria to resist the mechanical forces generated by the blood flow. This response is characterized by the formation of numerous 100 nm wide membrane protrusions morphologically related to filopodia. Here, a high-resolution quantitative live-cell fluorescence microscopy procedure was designed and used to study this process. A farnesylated plasma membrane marker was first detected only a few seconds after bacterial contact, rapidly followed by actin cytoskeleton reorganization and bulk cytoplasm accumulation. The bacterial type IV pili-associated minor pilin PilV is necessary for the initiation of this cascade. Plasma membrane composition is a key factor as cholesterol depletion with methyl-ß-cyclodextrin completely blocks the initiation of the cellular response. In contrast membrane deformation does not require the actin cytoskeleton. Strikingly, plasma membrane remodelling undermicrocolonies is also independent of common intracellular signalling pathways as cellular ATP depletion is not inhibitory. This study shows that bacteria-induced plasma membrane reorganization is a rapid event driven by a direct cross-talk between type IV pili and the plasma membrane rather than by the activation of an intracellular signalling pathway that would lead to actin remodelling.


Asunto(s)
Adhesión Bacteriana , Células Endoteliales/microbiología , Interacciones Huésped-Patógeno , Neisseria meningitidis/fisiología , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/microbiología , Microscopía Fluorescente , Imagen Óptica , Factores de Virulencia/metabolismo
16.
Science ; 331(6018): 778-82, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21311024

RESUMEN

The Gram-negative bacterium Neisseria meningitidis asymptomatically colonizes the throat of 10 to 30% of the human population, but throat colonization can also act as the port of entry to the blood (septicemia) and then the brain (meningitis). Colonization is mediated by filamentous organelles referred to as type IV pili, which allow the formation of bacterial aggregates associated with host cells. We found that proliferation of N. meningitidis in contact with host cells increased the transcription of a bacterial gene encoding a transferase that adds phosphoglycerol onto type IV pili. This unusual posttranslational modification specifically released type IV pili-dependent contacts between bacteria. In turn, this regulated detachment process allowed propagation of the bacterium to new colonization sites and also migration across the epithelium, a prerequisite for dissemination and invasive disease.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Neisseria meningitidis/patogenicidad , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Adhesión Bacteriana , Línea Celular Tumoral , Células Epiteliales/microbiología , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Glicerol/metabolismo , Humanos , Modelos Moleculares , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Fosforilación , Transcripción Genética
17.
Traffic ; 11(7): 899-911, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20406420

RESUMEN

In Salmonella-infected cells, the bacterial effector SifA forms a functional complex with the eukaryotic protein SKIP (SifA and kinesin-interacting protein). The lack of either partner has important consequences on the intracellular fate and on the virulence of this pathogen. In addition to SifA, SKIP binds the microtubule-based motor kinesin-1. Yet the absence of SifA or SKIP results in an unusual accumulation of kinesin-1 on the bacterial vacuolar membrane. To understand this apparent contradiction, we investigated the interaction between SKIP and kinesin-1 and the function of this complex. We show that the C-terminal RUN (RPIP8, UNC-14 and NESCA) domain of SKIP interacted specifically with the tetratricopeptide repeat (TPR) domain of the kinesin light chain. Overexpression of SKIP induced a microtubule- and kinesin-1-dependent anterograde movement of late endosomal/lysosomal compartments. In infected cells, SifA contributed to the fission of vesicles from the bacterial vacuole and the SifA/SKIP complex was required for the formation and/or the anterograde transport of kinesin-1-enriched vesicles. These observations reflect the role of SKIP as a linker and/or an activator for kinesin-1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Cinesinas/metabolismo , Salmonella/patogenicidad , Vacuolas/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Salmonella/metabolismo , Infecciones por Salmonella/metabolismo , Vacuolas/microbiología , Virulencia , Factores de Virulencia/metabolismo
18.
J Biol Chem ; 284(48): 33151-60, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19801640

RESUMEN

SifA is a Salmonella effector that is translocated into infected cells by the pathogenicity island 2-encoded type 3 secretion system. SifA is a critical virulence factor. Previous studies demonstrated that, upon translocation, SifA binds the pleckstrin homology motif of the eukaryotic host protein SKIP. In turn, the SifA-SKIP complex regulates the mobilization of the molecular motor kinesin-1 on the bacterial vacuole. SifA exhibits multiple domains containing functional motifs. Here we performed a molecular dissection and a mutational study of SifA to evaluate the relative contribution of the different domains to SifA functions. Biochemical and crystallographic analysis confirmed that the N-terminal domain of SifA is sufficient to interact with the pleckstrin homology domain of SKIP, forming a 1:1 complex with a micromolar dissociation constant. Mutation of the tryptophan residue in the WXXXE motif, which has been proposed to mimic active form of GTPase, deeply affected the stability and the translocation of SifA while mutations of the glutamic residue had no functional impact. A SifA L130D mutant that does not bind SKIP showed a DeltasifA-like phenotype both in infected cells and in the mouse model of infection. We concluded that the WXXXE motif is essential for maintaining the tertiary structure of SifA, the functions of which require the interaction with the eukaryotic protein SKIP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Factores de Virulencia/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Glicoproteínas/química , Glicoproteínas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Cinesinas/metabolismo , Cinética , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Microscopía Fluorescente , Modelos Moleculares , Mutación , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Salmonella/genética , Salmonella/patogenicidad , Salmonella/fisiología , Salmonelosis Animal/metabolismo , Salmonelosis Animal/microbiología , Virulencia/genética , Factores de Virulencia/química , Factores de Virulencia/genética
19.
Methods Mol Biol ; 394: 275-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18363240

RESUMEN

Salmonella enterica is an intracellular bacterial pathogen that causes gastroenteritis and typhoid fever. Inside host cells, the bacterium is enclosed in a membrane bound compartment, the Salmonella-containing vacuole (SCV). Intracellular replication of Salmonella requires the translocation of effector proteins into the host cytosol. The SifA effector protein is important for the membrane stability of the SCV. Recently, we have shown that the Salmonella sifA- mutant presents on its vacuole an important accumulation of kinesin-1, a molecular motor involved in the plus-end-directed transport of various organelles. Kinesin-1 is not recruited on SCVs of mutants that do not translocate effector proteins. This indicates that SifA is a negative regulator of the recruitment of this molecular motor and reveals the existence of another effector that recruits kinesin-1. This chapter describes techniques that are used to screen by immunofluorescence microscopy the accumulation of kinesin-1 on strains of Salmonella carrying multiple mutations.


Asunto(s)
Cinesinas/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Bases , Cartilla de ADN/genética , ADN Bacteriano/genética , Genes Bacterianos , Glicoproteínas/genética , Glicoproteínas/fisiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Microscopía Fluorescente , Mutación , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Vacuolas/metabolismo , Vacuolas/microbiología
20.
Proc Natl Acad Sci U S A ; 103(36): 13497-502, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16938850

RESUMEN

Understanding the mechanisms of Salmonella virulence is an important challenge. The capacity of this intracellular bacterial pathogen to cause diseases depends on the expression of virulence factors including the second type III secretion system (TTSS-2), which is used to translocate into the eukaryotic cytosol a set of effector proteins that divert the biology of the host cell and shape the bacterial replicative niche. Yet little is known about the eukaryotic functions affected by individual Salmonella effectors. Here we report that the TTSS-2 effector PipB2 interacts with the kinesin light chain, a subunit of the kinesin-1 motor complex that drives anterograde transport along microtubules. Translocation of PipB2 is both necessary and sufficient for the recruitment of kinesin-1 to the membrane of the Salmonella-containing vacuole. In vivo, PipB2 contributes to the attenuation of Salmonella mutant strains in mice. Taken together, our data indicate that the TTSS-2-mediated fine-tuning of kinesin-1 activity associated with the bacterial vacuole is crucial for the virulence of Salmonella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cinesinas/metabolismo , Salmonella/metabolismo , Salmonella/patogenicidad , Animales , Proteínas Bacterianas/genética , Células de la Médula Ósea/citología , Diferenciación Celular , Línea Celular , Células Cultivadas , Femenino , Fémur/citología , Eliminación de Gen , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Salmonella/clasificación , Salmonella/genética , Salmonella/crecimiento & desarrollo , Salmonelosis Animal/microbiología , Vacuolas/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...