Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 12(11): 720-726, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37706539

RESUMEN

Hematopoiesis is maintained by hematopoietic stem cells (HSCs) that replenish all blood lineages throughout life. It is well-established that the HSC pool is functionally heterogeneous consisting of cells differing in longevity, self-renewal ability, cell proliferation, and lineage differentiation. Although HSCs can be identified through the Lineage-Sca-1+c-Kit+CD48-CD34-CD150+ immunophenotype, the cell surface marker combination does not permit absolute purification of functional HSCs with long-term reconstituting ability. Therefore, prospective isolation of long-term HSCs is crucial for mechanistic understanding of the biological functions of HSCs and for resolving functional heterogeneity within the HSC population. Here, we show that the combination of CD229 and CD49b cell surface markers within the phenotypic HSC compartment identifies a subset of multipotent progenitor (MPP) cells with high proliferative activity and short-term reconstituting ability. Thus, the addition of CD229 and CD49b to conventional HSC markers permits prospective isolation of functional HSCs by distinguishing MPPs in the HSC compartment.


Asunto(s)
Células Madre Hematopoyéticas , Integrina alfa2 , Animales , Ratones , Integrina alfa2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes , Diferenciación Celular , Hematopoyesis , Ratones Endogámicos C57BL
2.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350286

RESUMEN

The primary cilium is an organelle present in most adult mammalian cells that is considered as an antenna for sensing the local microenvironment. Here, we use intact mouse pancreatic islets of Langerhans to investigate signaling properties of the primary cilium in insulin-secreting ß-cells. We find that GABAB1 receptors are strongly enriched at the base of the cilium, but are mobilized to more distal locations upon agonist binding. Using cilia-targeted Ca2+ indicators, we find that activation of GABAB1 receptors induces selective Ca2+ influx into primary cilia through a mechanism that requires voltage-dependent Ca2+ channel activation. Islet ß-cells utilize cytosolic Ca2+ increases as the main trigger for insulin secretion, yet we find that increases in cytosolic Ca2+ fail to propagate into the cilium, and that this isolation is largely due to enhanced Ca2+ extrusion in the cilium. Our work reveals local GABA action on primary cilia that involves Ca2+ influx and depends on restricted Ca2+ diffusion between the cilium and cytosol.


Asunto(s)
Calcio , Cilios , Islotes Pancreáticos , Receptores de GABA-B , Ácido gamma-Aminobutírico , Animales , Ratones , Calcio/metabolismo , Células Cultivadas , Cilios/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptores de GABA-B/metabolismo , Citosol
3.
Stem Cell Reports ; 17(7): 1546-1560, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35714596

RESUMEN

Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b- HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b- and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms.


Asunto(s)
Células Madre Hematopoyéticas , Integrina alfa2 , Diferenciación Celular/genética , Linaje de la Célula/genética , Hematopoyesis/genética , Células Madre Multipotentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...