Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674148

RESUMEN

It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.


Asunto(s)
Antibacterianos , Microbiota , Neoplasias de la Vejiga Urinaria , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/microbiología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Microbiota/efectos de los fármacos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Fosfomicina/uso terapéutico , Fosfomicina/farmacología , Fluoroquinolonas/uso terapéutico , Fluoroquinolonas/farmacología , beta-Lactamas/uso terapéutico , beta-Lactamas/farmacología
2.
Int J Mol Sci ; 18(7)2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28671586

RESUMEN

The regenerative and immunomodulatory activity of mesenchymal stromal cells (MSCs) is partially mediated by secreted vesicular factors. Extracellular vesicles (EVs) exocytosed by MSCs are gaining increased attention as prospective non-cellular therapeutics for a variety of diseases. However, the lack of suitable in vitro assays to monitor the therapeutic potential of EVs currently restricts their application in clinical studies. We have evaluated a dual in vitro immunomodulation potency assay that reproducibly reports the inhibitory effect of MSCs on induced T-cell proliferation and the alloantigen-driven mixed leukocyte reaction of pooled peripheral blood mononuclear cells in a dose-dependent manner. Phytohemagglutinin-stimulated T-cell proliferation was inhibited by MSC-derived EVs in a dose-dependent manner comparable to MSCs. In contrast, inhibition of alloantigen-driven mixed leukocyte reaction was only observed for MSCs, but not for EVs. Our results support the application of a cell-based in vitro potency assay for reproducibly determining the immunomodulatory potential of EVs. Validation of this assay can help establish reliable release criteria for EVs for future clinical studies.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inmunomodulación , Células del Estroma/metabolismo , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Exosomas/inmunología , Exosomas/metabolismo , Vesículas Extracelulares/inmunología , Humanos , Isoantígenos/inmunología , Activación de Linfocitos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Células Madre Mesenquimatosas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Cytotherapy ; 19(4): 458-472, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28188071

RESUMEN

BACKGROUND AIMS: Extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) may contribute to biological processes such as tissue regeneration, immunomodulation and neuroprotection. Evaluation of their therapeutic potential and application in future clinical trials demands thorough characterization of EV content and production under defined medium conditions, devoid of xenogenic substances and serum-derived vesicles. Addressing the apparent need for such a growth medium, we have developed a medium formulation based on pooled human platelet lysate (pHPL), free from animal-derived xenogenic additives and depleted of EVs. METHODS: Depletion of EVs from complete growth medium was achieved by centrifugation at 120 000 g for 3 h, which reduced RNA-containing pHPL EVs to below the detection limit. RESULTS: Bone marrow (BM)-derived MSCs propagated in this medium retained the characteristic surface marker expression, cell morphology, viability and in vitro osteogenic and adipogenic differentiation potential. The proliferation rate was not significantly affected after 48 h but was decreased by 13% after 96 h. EVs collected from BM-MSCs cultured in EV-depleted medium revealed a similar RNA pattern as EVs generated in standard pHPL EV-containing medium but displayed a more clearly defined pattern of proteins characteristic for EVs. Reduction of pHPL content from 10% to 2% or serum-/pHPL-free conditions strongly altered MSC characteristics and RNA content of released EV. CONCLUSIONS: The 10% pHPL-based EV-depleted medium is appropriate for purification of exclusively human MSC-derived EVs. With this Good Manufacturing Practice-grade protocol, characterization and establishment of protein and RNA profiles from MSC-derived EVs can now be achieved to identify active components in therapeutic EVs for future clinical application.


Asunto(s)
Técnicas de Cultivo de Célula/normas , Ingeniería Celular/normas , Vesículas Extracelulares/trasplante , Industria Manufacturera/normas , Células Madre Mesenquimatosas/citología , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Diferenciación Celular/efectos de los fármacos , Ingeniería Celular/métodos , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Industria Manufacturera/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/ultraestructura , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Guías de Práctica Clínica como Asunto/normas , Estándares de Referencia
4.
Semin Cancer Biol ; 23(4): 252-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23810837

RESUMEN

Autophagy, a highly regulated self-degradation process of eukaryotic cells, is a context-dependent tumor-suppressing mechanism that can also promote tumor cell survival upon stress and treatment resistance. Because of this ambiguity, autophagy is considered as a double-edged sword in oncology, making anti-cancer therapeutic approaches highly challenging. In this review, we present how systems-level knowledge on autophagy regulation can help to develop new strategies and efficiently select novel anti-cancer drug targets. We focus on the protein interactors and transcriptional/post-transcriptional regulators of autophagy as the protein and regulatory networks significantly influence the activity of core autophagy proteins during tumor progression. We list several network resources to identify interactors and regulators of autophagy proteins. As in silico analysis of such networks often necessitates experimental validation, we briefly summarize tractable model organisms to examine the role of autophagy in cancer. We also discuss fluorescence techniques for high-throughput monitoring of autophagy in humans. Finally, the challenges of pharmacological modulation of autophagy are reviewed. We suggest network-based concepts to overcome these difficulties. We point out that a context-dependent modulation of autophagy would be favored in anti-cancer therapy, where autophagy is stimulated in normal cells, while inhibited only in stressed cancer cells. To achieve this goal, we introduce the concept of regulo-network drugs targeting specific transcription factors or miRNA families identified with network analysis. The effect of regulo-network drugs propagates indirectly through transcriptional or post-transcriptional regulation of autophagy proteins, and, as a multi-directional intervention tool, they can both activate and inhibit specific proteins in the same time. The future identification and validation of such regulo-network drug targets may serve as novel intervention points, where autophagy can be effectively modulated in cancer therapy.


Asunto(s)
Autofagia/fisiología , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/fisiología , Transducción de Señal/fisiología , Animales , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Autofagia/genética , Modelos Animales de Enfermedad , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Brief Bioinform ; 14(5): 618-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23640570

RESUMEN

The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.


Asunto(s)
Biología Computacional/educación , Biología Celular/educación , Curriculum , Comunicación Interdisciplinaria , Aprendizaje , Biología Molecular/educación , Transducción de Señal , Biología de Sistemas/educación , Universidades
6.
Lipids Health Dis ; 11: 110, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958747

RESUMEN

BACKGROUND: The interactions of oxidized low-density lipoprotein (LDL) and macrophages are hallmarks in the development of atherosclerosis. The biological activities of the modified particle in these cells are due to the content of lipid oxidation products and apolipoprotein modification by oxidized phospholipids. RESULTS: It was the aim of this study to determine the role of short-chain oxidized phospholipids as components of modified LDL in cultured macrophages. For this purpose we investigated the effects of the following oxidized phospholipids on cell viability and apoptosis: 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and oxidized alkylacyl phospholipids including 1-O-hexadecyl-2-glutaroyl-sn-glycero-3-phosphocholine (E-PGPC) and 1-O-hexadecyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (E-POVPC). We found that these compounds induced apoptosis in RAW264.7 and bone marrow-derived macrophages. The sn-2 carboxyacyl lipid PGPC was more toxic than POVPC which carries a reactive aldehyde function in position sn-2 of glycerol. The alkylacyl phospholipids (E-PGPC and E-POVPC) and the respective diacyl analogs show similar activities. Apoptosis induced by POVPC and its alkylether derivative could be causally linked to the fast activation of an acid sphingomyelinase, generating the apoptotic second messenger ceramide. In contrast, PGPC and its ether analog only negligibly affected this enzyme pointing to an entirely different mechanism of lipid toxicity. The higher toxicity of PGPC is underscored by more efficient membrane blebbing from apoptotic cells. In addition, the protein pattern of PGPC-induced microparticles is different from the vesicles generated by POPVC. CONCLUSIONS: In summary, our data reveal that oxidized phospholipids induce apoptosis in cultured macrophages. The mechanism of lipid toxicity, however, largely depends on the structural features of the oxidized sn-2 chain.


Asunto(s)
Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Fosfolípidos , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Ceramidas/química , Ceramidas/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Ratones , Oxidación-Reducción , Fosfolípidos/química , Fosfolípidos/farmacología , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/metabolismo
7.
Cell Biol Int ; 36(12): 1281-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22953972

RESUMEN

The borderline between necrosis and apoptosis is indistinct, but that between types of cell death is important because necrosis may lead to local inflammation, whereas apoptosis usually does not. In certain autoimmune disorders, inhibition of cell death is crucial, since macromolecules released from the dead cells may accelerate the autoimmune processes. We have used various cell death inhibitors to block cell death induced by 4HPR [N-(4-hydroxyphenil)-retinamide] the BL41 and U937 cell lines. VD-FMK, a general caspase inhibitor, inhibited DNA fragmentation induced by 4HPR, but not PI (propidium iodide) uptake and necrosis. Interestingly heparin, a serine-protease inhibitor, lowered the PI fluorescence of the dead cell population and increased the sub-G1 population as measured by flow cytometry. Regarding these changes, we found that heparin failed to increase DNA fragmentation, but merely liberated high molecular mass DNA fragments from dead cells. The exact mechanism is unclear, but heparin during secondary necrosis might enter the cells, bind RNPs (ribonucleoproteins), and pull them out with the attached DNA, where they would be sensitive to enzymatic degradation. Thus, the results suggest that heparin treatment helps in the clearance of cell debris and decreases the immunogenity of secondary necrotic cells.


Asunto(s)
Fragmentación del ADN/efectos de los fármacos , Fenretinida/efectos adversos , Heparina/farmacología , Necrosis/inducido químicamente , Inhibidores de Serina Proteinasa/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Línea Celular , ADN/genética , Humanos , Necrosis/tratamiento farmacológico , Necrosis/genética , Propidio/efectos adversos , Células U937
8.
PLoS One ; 7(7): e41945, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22860037

RESUMEN

For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Estaurosporina/farmacología , Inhibidores de Caspasas/farmacología , Citometría de Flujo , Humanos , Necrosis , Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Células U937
9.
PLoS One ; 7(8): e42690, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880082

RESUMEN

The important regulatory role of the guanine-quadruplex (GQ) structure, present in the nuclease hypersensitive element (NHE) III(1) region of the human c-myc (h c-myc) gene's promoter, in the regulation of the transcription of that gene has been documented. Here we present evidences, that the human nuclear poly(ADP-ribose)polymerase-1 (h PARP-1) protein participates in the regulation of the h c-myc gene expression through its interaction with this GQ structure, characterized by binding assays, fluorescence energy transfer (FRET) experiments and by affinity pull-down experiments in vitro, and by chromatin immunoprecipitation (ChIP)-qPCR analysis and h c-myc-promoter-luciferase reporter determinations in vivo. We surmise that h PARP-1 binds to the GQ structure and participates in the conversion of that structure into the transcriptionally more active B-DNA form. The first Zn-finger structure present in h PARP-1 participates in this interaction. PARP-1 might be a new member of the group of proteins participating in the regulation of transcription through their interactions with GQ structures present in the promoters of different genes.


Asunto(s)
ADN Forma B/metabolismo , G-Cuádruplex , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Inmunoprecipitación de Cromatina , ADN Forma B/química , Fibroblastos/enzimología , Transferencia Resonante de Energía de Fluorescencia , Genes Reporteros , Células HL-60 , Células HeLa , Humanos , Cinética , Luciferasas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Reacción en Cadena de la Polimerasa , Unión Proteica , Temperatura , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...