Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 535: 19-26, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35963304

RESUMEN

Serotonin is transformed into melatonin under the control of the light/dark cycle, representing a cornerstone of circadian rhythmicity. Serotonin also undergoes extensive metabolism to produce 5-hydroxyindoleacetic acid (5-HIAA), a biomarker for the diagnosis and monitoring of serotonin secreting neuroendocrine tumors (NETs). While serotonin, melatonin and their metabolites are part of an integrated comprehensive system, human observations about their respective plasma concentrations are still limited. We report here for the first time a multiplex UHPLC-MS/MS assay for the quantification of serotonin, 5-HIAA, 5-hydroxytryptophol (5-HTPL), N-acetyl-serotonin (NAS), Mel, 6-OH-Mel, 5-methoxytryptamine (5-MT), 5-methoxytryptophol (5-MTPL), and 5-methoxyindoleacetic acid (5-MIAA) in human plasma. Analytes were extracted by protein precipitation and solid phase extraction. Plasma concentrations for these analytes were determined in 102 healthy volunteers. The LLOQ of the assay ranges from 2.2 nM for serotonin to 1.0 pM for 6-OH-Mel. This sensitivity enables the quantification of circulating serotonin, 5-HIAA, NAS, Mel, and 5-MIAA, even at their lowest diurnal concentrations. This assay will enable specific, precise and accurate measurement of serotonin, Mel and their metabolites to draw a detailed picture of this complex pineal metabolism, allowing a dynamic understanding of these pathways and providing promising biomarkers and a metabolic signature for serotonin-secreting NETs.

2.
Clin Chim Acta ; 514: 24-28, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33333038

RESUMEN

Urinary 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic (VMA), homovanillic acid (HVA), catecholamines and metanephrines are produced in excess by catecholamine-producing tumors. These biogenic amines are unstable at low or high pH and require hydrochloric acid (HCl) to prevent their degradation. However, HCl addition may result in very low pH causing degradation or deconjugation of several metabolites. This study evaluated the buffering properties of sodium citrate to stabilize all biogenic amines. The metabolite concentrations were measured by LC-MS/MS or by a coulometric assay in 22 urine samples collected native and with HCl or sodium citrate. We studied the effect of pH, time (48 h, four weeks) and storage temperature at 22 °C, 4 °C, and -20 °C. We found that catecholamines degradation was prevented by HCl and citrate and that 5-HIAA was degraded in 5 out of 22 samples collected with HCl. All biogenic amines were efficiently stabilized by citrate for four weeks at 22 °C, except epinephrine (48 h at 4 °C, or four weeks at -20 °C). Sodium citrate did not cause quantification or analytical artefacts concerns. In conclusion, sodium citrate is a non-hazardous alternative to HCl for patients to send unfrozen urine samples to the laboratory which may safely store the sample for four weeks.


Asunto(s)
Química Clínica , Laboratorios , Aminas Biogénicas , Cromatografía Liquida , Ácido Homovanílico , Humanos , Ácido Hidroxiindolacético , Espectrometría de Masas en Tándem
3.
Anal Chem ; 92(1): 859-866, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31790196

RESUMEN

Neuropeptide Y (NPY) is a 36-amino acid peptide circulating at a subpicomolar concentration participating in multiple physiological and pathological processes. NPY is prone to peptidolysis, generating metabolites with modified affinity for the five known receptors of NPY that mediate distinct effects. It is, therefore, crucial to distinguish each metabolite to understand the multiple functions of NPY. Since immunoassays are not able to distinguish NPY from its metabolites, we have validated a microliquid chromatography tandem mass spectrometry (micro-LC-MS/MS) assay for the quantification of endogenous NPY, NPY2-36, NPY3-36, NPY1-35, and NPY3-35 in human plasma. Sample preparation relies on immunoextraction in 96-well plates, followed by solid-phase extraction prior to micro-LC-MS/MS. The LLOQ ranged from 0.03 to 0.16 pM, intra- and inter-assay precision were <27% and trueness <22%. We determined reference intervals in 155 healthy volunteers and 40 hypertensive patients. We found that NPY3-36 is the main circulating peptide in resting conditions and that NPY and catecholamines are simultaneously increased during orthostasis. We also showed that the concentrations of NPY and its metabolites are similar in healthy volunteers and hypertensive patients. NPY is the prototype peptide that circulates in concentrations expected to be beyond instrumental capacities. We have been successful in developing a high-throughput specific and sensitive assay by including a deep knowledge of the physicochemical properties of these peptides to an efficient multistep sample preparation, and a micro-LC chromatography. We believe that our methodological approach opens the possibility to selectively quantify other endogenous peptides cleaved by peptidases whose concentrations are below 1 pM.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Neuropéptido Y/sangre , Espectrometría de Masas en Tándem/métodos , Anticuerpos Inmovilizados/química , Cromatografía Líquida de Alta Presión/instrumentación , Diseño de Equipo , Humanos , Límite de Detección , Neuropéptido Y/análisis , Neuropéptido Y/metabolismo , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/instrumentación
4.
J Pharm Biomed Anal ; 166: 205-212, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30660035

RESUMEN

Teriparatide (PTH 1-34, Forsteo®) is a bioactive N-terminal fragment of the native endogenous parathyroid hormone (PTH 1-84) recommended for the treatment of osteoporosis in patients with high risk of fracture. Since PTH 1-34 may undergo proteolysis we have validated an ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for unambiguously measuring intact PTH 1-34 with the same sensitivity as ELISA, at subpicomolar level (LLOQ at 0.4 pM). The full chromatographic run was achieved in 16.5 min. The method validation showed satisfactory intra- and inter-assay precision (CV < 13%) and excellent trueness (<5%), and almost no matrix effect (recoveries 78-92%). We found that after subcutaneous injection in two volunteers, PTH 1-34 half-life was shorter with UHPLC-MS/MS and that ELISA was overestimating PTH 1-34 late concentrations in both volunteers. Qualitative mass spectrometry was performed and led to the discovery of PTH 1-33, a fragment of PTH 1-34 with unknown function. This study emphasized the importance of switching from immunoassays to mass spectrometry when measuring bioactive peptides prompt to proteolysis into fragments that may exhibit altered bioactivity and duration of action.


Asunto(s)
Fragmentos de Péptidos/sangre , Teriparatido/sangre , Área Bajo la Curva , Calibración , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Semivida , Voluntarios Sanos , Humanos , Inmunoensayo , Inyecciones Subcutáneas , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Teriparatido/administración & dosificación
5.
Pediatr Blood Cancer ; 62(4): 587-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25597761

RESUMEN

BACKGROUND: Urine catecholamines, vanillylmandelic, and homovanillic acid are recognized biomarkers for the diagnosis and follow-up of neuroblastoma. Plasma free (f) and total (t) normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT) could represent a convenient alternative to those urine markers. The primary objective of this study was to establish pediatric centile charts for plasma metanephrines. Secondarily, we explored their diagnostic performance in 10 patients with neuroblastoma. PROCEDURE: We recruited 191 children (69 females) free of neuroendocrine disease to establish reference intervals for plasma metanephrines, reported as centile curves for a given age and sex based on a parametric method using fractional polynomials models. Urine markers and plasma metanephrines were measured in 10 children with neuroblastoma at diagnosis. Plasma total metanephrines were measured by HPLC with coulometric detection and plasma free metanephrines by tandem LC-MS. RESULTS: We observed a significant age-dependence for tNMN, fNMN, and fMN, and a gender and age-dependence for tMN, fNMN, and fMN. Free MT was below the lower limit of quantification in 94% of the children. All patients with neuroblastoma at diagnosis were above the 97.5th percentile for tMT, tNMN, fNMN, and fMT, whereas their fMN and tMN were mostly within the normal range. As expected, urine assays were inconstantly predictive of the disease. CONCLUSIONS: A continuous model incorporating all data for a given analyte represents an appealing alternative to arbitrary partitioning of reference intervals across age categories. Plasma metanephrines are promising biomarkers for neuroblastoma, and their performances need to be confirmed in a prospective study on a large cohort of patients.


Asunto(s)
Biomarcadores de Tumor/sangre , Metanefrina/sangre , Modelos Biológicos , Neuroblastoma/sangre , Neuroblastoma/diagnóstico , Factores de Edad , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Factores Sexuales
6.
Clin Biochem ; 47(12): 1121-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24731790

RESUMEN

OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metanfetamina/análogos & derivados , Normetanefrina/sangre , Espectrometría de Masas en Tándem/métodos , Voluntarios Sanos , Humanos , Metanfetamina/sangre
7.
Clin Chim Acta ; 430: 125-8, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24418619

RESUMEN

BACKGROUND: Total (i.e. free+sulfated) metanephrines in plasma is a biomarker for the diagnosis of pheochromocytoma/paraganglioma. Sulfated metanephrines must be completely deconjugated by perchloric acid hydrolysis or sulfatase treatment prior to analytical measurement to enable quantification by current techniques. In this report, we compare the yield and efficiency of both methods. METHODS: The deconjugation rate of synthetic sulfated metanephrines (normetanephrine (S-NMN), metanephrine (S-MN) and methoxytyramine (S-MT)) spiked in charcoal-stripped plasma was determined by boiling perchloric acid and compared to sulfatase treatment. Total plasma metanephrines (MN, NMN and MT) were also determined in patient samples by both methods. RESULTS: The complete deconjugation of sulfated metanephrines is achieved after 30 min incubation with 0.1M boiling perchloric acid or upon sulfatase treatment. Ten minutes of acid hydrolysis (gold-standard) leads to a 30% underestimation of metanephrine concentrations. The enzyme hydrolysis is time and amount of sulfatase dependent. The rate of hydrolysis is analyte-dependent (MT>>NMN>MN), although it must contain at least 0.8 U/ml of sample. The Deming regression curves comparing acid versus enzyme hydrolysis on patient samples assessed that both methods gave similar unbiased concentrations. CONCLUSION: Enzyme and acid treatments are equivalent and efficient for removing sulfate from metanephrines as long as the optimal protocol is used for each method. However, the gold standard method for acid hydrolysis at 10 min established more than 20 years ago was not satisfactory regarding the hydrolysis of metanephrines in plasma.


Asunto(s)
Metanefrina/sangre , Metanefrina/química , Percloratos/química , Sulfatasas/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Metanefrina/metabolismo , Percloratos/farmacología
8.
Anal Chem ; 85(7): 3539-44, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23432705

RESUMEN

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 µL, e.g., from children and mice).


Asunto(s)
Catecolaminas/sangre , Ensayos Analíticos de Alto Rendimiento/instrumentación , Extracción en Fase Sólida/instrumentación , Adulto , Cromatografía Líquida de Alta Presión/métodos , Diseño de Equipo , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Muestra , Sensibilidad y Especificidad , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...