Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1354091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655027

RESUMEN

The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.

2.
Nat Commun ; 15(1): 186, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167864

RESUMEN

Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding. ApoL6 knockdown results in smaller LD with lower TAG content in adipocytes, while ApoL6 overexpression causes larger LD with higher TAG content. We show that the ApoL6 affects adipocytes through inhibition of lipolysis. While ApoL6, Perilipin 1 (Plin1), and HSL can form a complex on LD, C-terminal ApoL6 directly interacts with N-terminal Plin1 to prevent Plin1 binding to HSL, to inhibit lipolysis. Thus, ApoL6 ablation decreases white adipose tissue mass, protecting mice from diet-induced obesity, while ApoL6 overexpression in adipose brings obesity and insulin resistance, making ApoL6 a potential future target against obesity and diabetes.


Asunto(s)
Gotas Lipídicas , Lipólisis , Animales , Ratones , Gotas Lipídicas/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Perilipina-1/genética , Perilipina-1/metabolismo
3.
Mol Metab ; 81: 101887, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280449

RESUMEN

OBJECTIVE: Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS: Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS: All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS: TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Animales , Femenino , Masculino , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Secreción de Insulina , Riñón/metabolismo , Metabolismo de los Lípidos , Lípidos , Obesidad/metabolismo
4.
Biology (Basel) ; 12(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759637

RESUMEN

Barth syndrome (BTHS) is caused by mutations in tafazzin resulting in deficits in cardiolipin remodeling that alter major metabolic processes. The tafazzin gene is encoded on the X chromosome, and therefore BTHS primarily affects males. Female carriers are typically considered asymptomatic, but age-related changes have been reported in female carriers of other X-linked disorders. Therefore, we examined the phenotype of female mice heterozygous for deletion of the tafazzin gene (Taz-HET) at 3 and 12 months of age. Food intakes, body masses, lean tissue and adipose depot weights, daily activity levels, metabolic measures, and exercise capacity were assessed. Age-related changes in mice resulted in small but significant genotype-specific differences in Taz-HET mice compared with their female Wt littermates. By 12 months, Taz-HET mice weighed less than Wt controls and had smaller gonadal, retroperitoneal, and brown adipose depots and liver and brain masses, despite similar food consumption. Daily movement, respiratory exchange ratio, and total energy expenditure did not vary significantly between the age-matched genotypes. Taz-HET mice displayed improved glucose tolerance and insulin sensitivity at 12 months compared with their Wt littermates but had evidence of slightly reduced exercise capacity. Tafazzin mRNA levels were significantly reduced in the cardiac muscle of 12-month-old Taz-HET mice, which was associated with minor but significant alterations in the heart cardiolipin profile. This work is the first to report the characterization of a model of female carriers of heterozygous tafazzin deficiency and suggests that additional study, particularly with advancing age, is warranted.

5.
Biomedicines ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831174

RESUMEN

Barth syndrome (BTHS) is an X-linked mitochondrial disease caused by mutations in the gene encoding for tafazzin (TAZ), a key enzyme in the remodeling of cardiolipin. Mice with a germline deficiency in Taz have been generated (Taz-KO) but not yet fully characterized. We performed physiological assessments of 3-, 6-, and 12-month-old male Taz-KO mice, including measures of perinatal survival, growth, lifespan, gross anatomy, whole-body energy and substrate metabolism, glucose homeostasis, and exercise capacity. Taz-KO mice displayed reduced viability, with lower-than-expected numbers of mice recorded at 4 weeks of age, and a shortened lifespan due to disease progression. At all ages, Taz-KO mice had lower body weights compared with wild-type (Wt) littermates despite similar absolute food intakes. This finding was attributed to reduced adiposity and diminutive organs and tissues, including heart and skeletal muscles. Although there were no differences in basal levels of locomotion between age-matched genotypes, indirect calorimetry studies showed higher energy expenditure measures and respiratory exchange ratios in Taz-KO mice. At the youngest age, Taz-KO mice had comparable glucose tolerance and insulin action to Wt mice, but while these measures indicated metabolic impairments in Wt mice with advancing age that were likely associated with increasing adiposity, Taz-KO mice were protected. Comparisons across the three age-cohorts revealed a significant and more severe deterioration of exercise capacity in Taz-KO mice than in their Wt littermate controls. The Taz-KO mouse model faithfully recapitulates important aspects of BTHS, and thus provides an important new tool to investigate pathophysiological mechanisms and potential therapies.

6.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743156

RESUMEN

Tissue-specific cardiolipin fatty acyl profiles are achieved by remodeling of de novo synthesized cardiolipin, and four remodeling enzymes have thus far been identified. We studied the enzyme phospholipase A and acyltransferase 1 (PLAAT1), and we report the discovery that it has phosphatidylcholine (PC):monolysocardiolipin (MLCL) transacylase activity. Subcellular localization was analyzed by differential centrifugation and immunoblotting. Total levels of major phospholipids, and the fatty acyl profile of cardiolipin, were analyzed in HEK293 cells expressing murine PLAAT1 using gas chromatography. Apparent enzyme kinetics of affinity-purified PLAAT1 were calculated using radiochemical enzyme assays. This enzyme was found to localize predominantly to the endoplasmic reticulum (ER) but was detected at low levels in the mitochondria-associated ER matrix. Cells expressing PLAAT1 had higher levels of total cardiolipin, but not other phospholipids, and it was primarily enriched in the saturated fatty acids myristate, palmitate, and stearate, with quantitatively smaller increases in the n-3 polyunsaturated fatty acids linolenate, eicosatrienoate, and eicosapentanoate and the monounsaturated fatty acid erucate. Affinity-purified PLAAT1 did not catalyze the transacylation of MLCL using 1-palmitoyl-2-[14C]-linoleoyl-PC as an acyl donor. However, PLAAT1 had an apparent Vmax of 1.61 µmol/min/mg protein and Km of 126 µM using [9,10-3H]-distearoyl-PC as an acyl donor, and 0.61 µmol/min/mg protein and Km of 16 µM using [9,10-3H]-dioleoyl-PC. PLAAT1 is therefore a novel PC:MLCL transacylase.


Asunto(s)
Cardiolipinas , Lisofosfolípidos , Fosfolipasas A/metabolismo , Aciltransferasas/metabolismo , Animales , Cardiolipinas/metabolismo , Células HEK293 , Humanos , Lecitinas , Lisofosfolípidos/metabolismo , Ratones
7.
Sci Rep ; 12(1): 9466, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676289

RESUMEN

Barth syndrome (BTHS) is caused by mutations in the TAZ gene encoding the cardiolipin remodeling enzyme, Tafazzin. The study objective was to quantitatively examine growth characteristics and mitochondrial morphology of transformed lymphoblast cell lines derived from five patients with BTHS relative to five healthy controls, as well as the therapeutic potential of oleoylethanolamide (OEA) and linoleoylethanolamide (LEA). These bioactive lipids both activate PPARα, which may be therapeutic. BTHS lymphoblasts grew more slowly than controls, suggesting lymphopenia merits clinical investigation. Treatment of BTHS lymphoblasts with OEA, but not LEA, significantly restored mitochondrial membrane potential, as well as colony growth in all BTHS lymphoblast lines, although a full growth rescue was not achieved. Quantification analysis of electron micrographs from three BTHS and healthy lymphoblast donors indicated similar numbers of mitochondria per cell, but lower average cristae length per mitochondrion, and higher mitochondrial density. Additionally, BTHS lymphoblasts had larger mitochondria, and a higher percentage of abnormally large mitochondria (> 1 µm2) than healthy controls. Notably, OEA treatment significantly restored mitochondrial size, without affecting density or cristae lengths. Cardiolipin total content, relative linoleic acid content and monolysocardiolipin:cardiolipin ratios were not improved by OEA, indicating that effects on growth, and mitochondrial morphology and function, occurred without resolving this deficit. However, immunoblotting showed higher levels of OPA1, a biomarker for mitochondrial fusion, in BTHS lymphoblasts, which was attenuated by OEA treatment, implicating altered mitochondrial dynamics in the pathology and treatment of BTHS.


Asunto(s)
Aciltransferasas/metabolismo , Síndrome de Barth , Cardiolipinas , Linfocitos , Aciltransferasas/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Endocannabinoides , Humanos , Mitocondrias/metabolismo , Ácidos Oléicos , Factores de Transcripción/metabolismo
8.
Int J Obes (Lond) ; 46(8): 1446-1455, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35637262

RESUMEN

BACKGROUND: The endoplasmic reticulum senses alterations to cellular homeostasis that activates the unfolded protein response (UPR). UPR proteins are known to aid in regulating glucose and lipid metabolism. CREB3 is a UPR-associated transcription factor whose potential role in regulating energy metabolism remains unclear. METHODS: Eight-week-old wild-type (WT) and Creb3+/- mice were placed on control and high-fat diets (HFD) for 8 weeks, and metabolic phenotypes characterized by weekly weighing, indirect calorimetry, body composition scans, glucose tolerance tests, plasma analysis, tissue lipid quantifications and gene/protein expression analysis. RESULTS: HFD weight gain in Creb3+/- males was reduced by 34% (p < 0.0001) and females by 39.5% (p = 0.014) from their WT counterparts. No differences were found in HFD food intake or total fecal lipids between genotypes. Creb3+/- mice had increased energy expenditure and respiratory exchange ratios (p = 0.002) relative to WT. Creb3+/- mice had significant reductions in absolute fat and lean tissue, while Creb3+/- females had significant reductions in body fat% and increased lean% composition (p < 0.0001) compared to WT females. Creb3+/- mice were protected from HFD-induced basal hyperglycemia (males p < 0.0001; females p = 0.0181). Creb3+/- males resisted HFD-induced hepatic lipid accumulation (p = 0.025) and glucose intolerance compared to WT (p < 0.0001) while Creb3+/- females were protected from lipid accumulation in skeletal muscle (p = 0.001). Despite the metabolic differences of Creb3+/- mice on HFD, lipid plasma profiles did not significantly differ from WT. Fasted Creb3+/- mice additionally revealed upregulation of hepatic energy expenditure and gluconeogenic genes such as Pgc-1a and Gr (glucocorticoid receptor) (p < 0.05), respectively. CONCLUSIONS: Reduced expression of CREB3 increased energy expenditure and the respiratory exchange ratio, and protected mice from HFD-induced weight gain, basal hyperglycemia, and sex-specific tissue lipid accumulation. We postulate that CREB3 is a novel key regulator of diet-induced obesity and energy metabolism that warrants further investigation as a potential therapeutic target in metabolic disorders.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Dieta Alta en Grasa , Metabolismo Energético , Obesidad , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Femenino , Intolerancia a la Glucosa/genética , Metabolismo de los Lípidos , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Aumento de Peso
9.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456981

RESUMEN

Glucagon-like peptide-1 (GLP-1) potentiates glucose-stimulated insulin secretion (GSIS). While dozens of compounds stimulate GLP-1 secretion, few inhibit. Reduced GLP-1 secretion and impaired GSIS occur in chronic inflammation. Lysophosphatidic acids (LPAs) are bioactive phospholipids elevated in inflammation. The aim of this study was to test whether LPA inhibits GLP-1 secretion in vitro and in vivo. GLUTag L-cells were treated with various LPA species, with or without LPA receptor (LPAR) antagonists, and media GLP-1 levels, cellular cyclic AMP and calcium ion concentrations, and DPP4 activity levels were analyzed. Mice were injected with LPA, with or without LPAR antagonists, and serum GLP-1 and DPP4 activity were measured. GLUTag GLP-1 secretion was decreased ~70-90% by various LPAs. GLUTag expression of Lpar1, 2, and 3 was orders of magnitude higher than Lpar4, 5, and 6, implicating the former group in this effect. In agreement, inhibition of GLP-1 secretion was reversed by the LPAR1/3 antagonist Ki16425, the LPAR1 antagonists AM095 and AM966, or the LPAR2 antagonist LPA2-antagonist 1. We hypothesized involvement of Gαi-mediated LPAR activity, and found that intracellular cyclic AMP and calcium ion concentrations were decreased by LPA, but restored by Ki16425. Mouse LPA injection caused an ~50% fall in circulating GLP-1, although only LPAR1 or LPAR1/3 antagonists, but not LPAR2 antagonism, prevented this. GLUTag L-cell and mouse serum DPP4 activity was unchanged by LPA or LPAR antagonists. LPA therefore impairs GLP-1 secretion in vitro and in vivo through Gαi-coupled LPAR1/3 signaling, providing a new mechanism linking inflammation with impaired GSIS.


Asunto(s)
Dipeptidil Peptidasa 4 , Péptido 1 Similar al Glucagón , Animales , Calcio , AMP Cíclico , Péptido 1 Similar al Glucagón/metabolismo , Inflamación , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Receptores del Ácido Lisofosfatídico/metabolismo
10.
Biochem Cell Biol ; 99(6): 725-734, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738827

RESUMEN

Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.


Asunto(s)
Ácido Graso Desaturasas , Linoleoil-CoA Desaturasa/metabolismo , Ácido Graso Desaturasas/genética , Células HEK293 , Humanos , Isoformas de Proteínas
11.
Lipids ; 55(3): 279-284, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32069377

RESUMEN

Lysophosphatidic acid (lysoPtdOH) levels have previously been reported to decrease in rodents with short-term fasting. We investigated whether a 16 h fast would change expression of autotaxin, the predominant phospholipase D responsible for adipose-derived lysoPtdOH synthesis, or any of the lysophosphatidic acid receptors (1-6) in four white adipose tissue (WAT) depots and interscapular brown adipose tissue (BAT) in male C57Bl/6J mice fed ad libitum, or fasted for 16 h. Aside from small inductions of Lpar1 in epididymal WAT and Lpar2 in epididymal and inguinal WAT, no significant changes were observed in expression of the Lpar family members, or autotaxin in perirenal, retroperitoneal, epididymal, or inguinal WAT or BAT with fasting. Comparison of the relative expression of Lpar1-6 in various depots showed that Lpar6 was the predominant Lpar in both WAT and BAT, and suggests that further work on the adipose-specific role of Lpar6 is warranted.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Animales , Ayuno , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo
12.
Lipids ; 54(8): 479-486, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31236951

RESUMEN

Lysophosphatidic acids (lysoPtdOH) are involved in several physiological processes including cell proliferation, inflammation, and glucose metabolism. However, measuring lysoPtdOH is challenging due to inadequate extraction techniques, poor chromatographic resolution, or the inability to discriminate between sn-1 and sn-2 regioisomers. In the present work, we developed a high-throughput (10 min run times) ultra-high-performance liquid chromatography-tandem mass spectrometry method capable of discriminating lysoPtdOH species by their fatty acyl composition and sn-localization on glycerol backbones. We quantitated sn-1/sn-2 regioisomeric pairs of lysoPtdOH with 16:0, 18:0, 18:1, 18:2, 20:4, and 22:6 fatty acyl chains using 50 µL of mouse plasma. The method presented here can be expanded to profile more lysoPtdOH species, and has the potential to be used in clinical settings to quickly screen lysoPtdOH profiles. Finally, the ability to discriminate between sn-1 and sn-2 isomers can provide insights regarding the metabolic origins and fates of specific lysoPtdOH molecules.


Asunto(s)
Lisofosfolípidos/sangre , Animales , Cromatografía Líquida de Alta Presión , Lisofosfolípidos/química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Espectrometría de Masas en Tándem
13.
Curr Opin Clin Nutr Metab Care ; 21(5): 352-359, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29912810

RESUMEN

PURPOSE OF REVIEW: Lipidomic profiling of biological samples is increasing in nutritional research applications. 'Lipidomic analyses' however can be quite variable in specific methods and the type of information about the specific lipids that is revealed. The lack of defined and simple terminology to describe aspects of lipidomics presents a challenge in the use of lipidomics across interdisciplinary research groups. RECENT FINDINGS: We propose the use of macrolipidomics and microlipidomics to define lipidomic strategies based on analytical outcomes. Macrolipidomics involves the global characterization of the most abundant lipids in a system, whereas microlipidomics examines low abundant lipids with potent bioactivity that typically require specialized analyses. We also propose that in addition to the term 'brutto', the terms 'medio, genio, and infinio' be used to indicate when information about the lipid molecule increases from isobars/isomers to regio-isomers with carbon-carbon double bond information. SUMMARY: The use of these terms will help establish a common language around the field of lipidomics and improve communication and uptake in the field of clinical nutrition. Macrolipidomic and microlipidomic terms quickly convey the general purpose of the approach. Brutto, medio, genio, and infino quickly convey the nature of the lipid identification.


Asunto(s)
Lípidos/clasificación , Animales , Humanos , Metabolismo de los Lípidos , Lípidos/análisis , Lípidos/química , Lípidos/fisiología , Fenómenos Fisiológicos de la Nutrición , Terminología como Asunto
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 700-711, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29627383

RESUMEN

Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I + II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ-/- soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatß and Lpaatε in Lpaatδ-/- mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/química , Fosforilación Oxidativa , Ácidos Fosfatidicos/análisis , Fosfatidiletanolaminas/análisis , Complejo Piruvato Deshidrogenasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
15.
Curr Opin Lipidol ; 29(2): 110-115, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29373329

RESUMEN

PURPOSE OF REVIEW: Lysophosphatidic acid acyltransferases (LPAATs)/acylglycerophosphate acyltransferases (AGPATs) are a homologous group of enzymes that all catalyze the de novo formation of phosphatidic acid from lysophosphatidic acid (LPA) and a fatty acyl-CoA. This review seeks to resolve the apparent redundancy of LPAATs through examination of recent literature. RECENT FINDINGS: Recent molecular studies suggest that individual LPAAT homologues produce functionally distinct pools of phosphatidic acid, whereas gene ablation studies demonstrate unique roles despite a similar biochemical function. Loss of the individual enzymes not only causes diverse effects on down-stream lipid metabolism, which can vary even for a single enzyme from one tissue to the next, but also results in a wide array of physiological consequences, ranging from cognitive impairment, to lipodystrophy, to embryonic lethality. SUMMARY: LPAATs are critical mediators of cell membrane phospholipid synthesis, regulating the production of specific down-stream glycerophospholipid species through generation of distinct pools of phosphatidic acid that feed into dedicated biosynthetic pathways. Loss of any specific LPAAT can lead to alterations in cellular and organellar membrane phospholipid composition that can vary for a single enzyme in different tissues, with unique pathophysiological implications.


Asunto(s)
Aciltransferasas/metabolismo , Aciltransferasas/deficiencia , Aciltransferasas/genética , Animales , Técnicas de Inactivación de Genes , Humanos
16.
J Lipid Res ; 58(10): 2037-2050, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28814640

RESUMEN

Acylglycerophosphate acyltransferase 4 (AGPAT4)/lysophosphatidic acid acyltransferase delta catalyzes the formation of phosphatidic acid (PA), a precursor of triacyl-glycerol (TAG). We investigated the effect of Agpat4 gene ablation on white adipose tissue (WAT) after finding consistent expression across depots. Epididymal WAT mass was 40% larger in male Agpat4-/- mice than wild-type littermates, but unchanged in perirenal, retroperitoneal, and inguinal WAT and subscapular brown adipose tissue. Metabolic changes were identified in epididymal WAT that were not evident in perirenal WAT, which was analyzed for comparison. The total epididymal TAG content doubled, increasing adipocyte cell size without changing markers of differentiation. Enzymes involved in de novo lipogenesis and complex lipid synthesis downstream of phosphatidic acid production were also unchanged. However, total epididymal TAG hydrolase activity was reduced, and there were significant decreases in total ATGL and reduced phosphorylation of hormone-sensitive lipase at the S563 and S660 PKA-activation sites. Analysis of Agpats 1, 2, 3, and 5, as well as Gpats 1, 2, 3, and 4, demonstrated compensatory upregulation in perirenal WAT that did not occur in epididymal WAT. Our findings therefore indicate depot-specific differences in the redundancy of Agpat4 and highlight the molecular and metabolic heterogeneity of individual visceral depots.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Tejido Adiposo Blanco/metabolismo , Epidídimo/metabolismo , Eliminación de Gen , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Adipocitos/citología , Tejido Adiposo Blanco/citología , Animales , Tamaño de la Célula , Epidídimo/citología , Regulación de la Expresión Génica/genética , Lipogénesis/genética , Lipólisis/genética , Masculino , Ratones , Tamaño de los Órganos , Ácidos Fosfatidicos/metabolismo , Triglicéridos/metabolismo
17.
Mol Cell Biol ; 37(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807933

RESUMEN

We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaatδ-/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaatδ-/- mice was unchanged. Importantly, we found that Lpaatδ-/- mice have a significantly and drastically lower brain content of the N-methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaatδ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors.


Asunto(s)
Aciltransferasas/deficiencia , Encéfalo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Aciltransferasas/genética , Animales , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Ratones , Ácidos Fosfatidicos/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Lipids ; 52(5): 457-461, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28405875

RESUMEN

During fasting, cells increase uptake of non-esterified fatty acids (NEFA) and esterify excess into phosphatidic acid (PtdOH), the common precursor of both triacylglycerols and phospholipids, using acylglycerophosphate acyltransferases/lysophosphatidic acid acyltransferases (AGPAT/LPAAT). Knowledge of the regulation of AGPAT enzymes is important for understanding fasting adaptations. Total RNA was isolated from liver, heart, and whole brain tissue of C57BL/6J mice fed ad libitum, or fasted for 16 h. Following fasting, induction of Agpat2, 3, 4, and 5 was observed in the liver, Agpat2 and 3 in heart tissue, and Agpat1, 2, and 3 in whole brain tissue. As a result, the relative abundance profile of the individual homologues within specific tissues was found to be significantly altered depending on the nutritive state of the animal. These data demonstrate tissue-specific effects of fasting on the regulation of different Agpat that are implicated in supporting unique downstream glycerolipid synthesis pathways.


Asunto(s)
Aciltransferasas/genética , Encéfalo/enzimología , Hígado/enzimología , Miocardio/enzimología , Aciltransferasas/metabolismo , Animales , Ayuno , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Distribución Tisular
19.
Neurosci Lett ; 633: 215-219, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27666977

RESUMEN

A preceding bout of acute aerobic exercise can enhance the induction of early long-term potentiation (LTP) in the primary motor cortex (M1). However, the influence of exercise when performed after the induction of plasticity has not been investigated. In addition, it is unclear whether the same effects are seen with techniques that induce long-term depression (LTD). We used continuous theta-burst stimulation (cTBS) to temporarily suppress cortical excitability and investigate whether moderate-intensity cycling exercise would alter the duration or intensity of cTBS after-effects in a nonexercised upper limb muscle. We observed that cTBS effects were abolished when followed by exercise, with no corresponding changes in intracortical network activity. We hypothesize that the induction of LTD may be suppressed by exercise-linked neurotransmitters that interact with glutamate receptors. Exercise appears to shift the neural balance towards facilitation and may work to counteract the effects of LTD-like processes.


Asunto(s)
Ejercicio Físico , Corteza Motora/fisiología , Estimulación Magnética Transcraneal , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Depresión Sináptica a Largo Plazo , Masculino , Músculo Esquelético/fisiología , Extremidad Superior
20.
Mol Nutr Food Res ; 60(8): 1804-18, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27061349

RESUMEN

Cardiolipin is a specialized phospholipid found primarily in the inner mitochondrial membrane. Because of its unique dimeric structure, cardiolipin plays an important role in mitochondrial function, stability, and membrane fluidity. As such, cardiolipin is subject to a high degree of remodeling by phospholipases, acyltransferases, and transacylases that create a fatty acyl profile that tends to be highly tissue-specific. Despite this overarching regulation, the molecular species of cardiolipin produced are also influenced by dietary lipid composition. A number of studies have characterized the tissue-specific profile of cardiolipin species and have investigated the specific nature of cardiolipin remodeling, including the role of both enzymes and diet. The aim of this review is to highlight tissue specific differences in cardiolipin composition and, collectively, the enzymatic and dietary factors that contribute to these differences. Consequences of aberrant cardiolipin fatty acyl remodeling are also discussed.


Asunto(s)
Cardiolipinas/química , Dieta , Grasas de la Dieta/metabolismo , Ácido Linoleico/metabolismo , Fluidez de la Membrana , Mitocondrias , Modelos Biológicos , Ácido Oléico/metabolismo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA