Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 171-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509360

RESUMEN

The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Microbiota , Filogenia , Proteoma , Simbiosis , Animales , Femenino , Humanos , Ratones , Bacterias/clasificación , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/patogenicidad , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Tropismo al Anfitrión , Microbiota/inmunología , Microbiota/fisiología , Especificidad de Órganos , Unión Proteica , Proteoma/inmunología , Proteoma/metabolismo , Reproducibilidad de los Resultados
2.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764290

RESUMEN

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismo
3.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36347253

RESUMEN

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Asunto(s)
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo , Peso Molecular
4.
Curr Opin Immunol ; 74: 156-163, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35123147

RESUMEN

Cyclic oligonucleotide-based antiphage signaling system (CBASS) immunity is a widespread form of antiphage defense in bacteria and archaea. Each CBASS operon encodes a cGAS/DncV-like Nucleotidyltransferase (CD-NTase) enzyme that synthesizes a nucleotide second messenger in response to viral infection. An associated Cap effector protein then binds the nucleotide signal and executes cell death to destroy the host cell and block phage propagation. Here we build upon recent advances to establish rules controlling each step of CBASS activation and antiphage defense. Comparative analysis of CBASS, CRISPR, Pycsar, and cGAS-STING immunity provides insight into the evolution of phage defense and animal innate immunity and highlights new questions emerging in the role of nucleotide second messenger signaling in host-virus interactions.


Asunto(s)
Bacteriófagos , Animales , Antivirales , Bacteriófagos/metabolismo , Humanos , Inmunidad Innata , Nucleótidos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oligonucleótidos
5.
Science ; 375(6577): 221-225, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35025633

RESUMEN

Gasdermin proteins form large membrane pores in human cells that release immune cytokines and induce lytic cell death. Gasdermin pore formation is triggered by caspase-mediated cleavage during inflammasome signaling and is critical for defense against pathogens and cancer. We discovered gasdermin homologs encoded in bacteria that defended against phages and executed cell death. Structures of bacterial gasdermins revealed a conserved pore-forming domain that was stabilized in the inactive state with a buried lipid modification. Bacterial gasdermins were activated by dedicated caspase-like proteases that catalyzed site-specific cleavage and the removal of an inhibitory C-terminal peptide. Release of autoinhibition induced the assembly of large and heterogeneous pores that disrupted membrane integrity. Thus, pyroptosis is an ancient form of regulated cell death shared between bacteria and animals.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Piroptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Bacterias/metabolismo , Bacterias/virología , Bradyrhizobium/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Cytophagaceae/química , Modelos Moleculares , Myxococcales/química , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/metabolismo , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
6.
Mol Cell ; 81(24): 5039-5051.e5, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784509

RESUMEN

Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded ß-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/patogenicidad , Membrana Celular/virología , Escherichia coli/virología , Yersinia/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriófagos/inmunología , Muerte Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/metabolismo , Interacciones Huésped-Patógeno , Ligandos , Conformación Proteica , Multimerización de Proteína , Transporte de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Yersinia/genética
7.
Cell Rep ; 35(9): 109206, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077735

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are signaling proteins that initiate antiviral immunity in animal cells and cyclic-oligonucleotide-based anti-phage signaling system (CBASS) phage defense in bacteria. Upon phage recognition, bacterial CD-NTases catalyze synthesis of cyclic-oligonucleotide signals, which activate downstream effectors and execute cell death. How CD-NTases control nucleotide selection to specifically induce defense remains poorly defined. Here, we combine structural and nucleotide-analog interference-mapping approaches to identify molecular rules controlling CD-NTase specificity. Structures of the cyclic trinucleotide synthase Enterobacter cloacae CdnD reveal coordinating nucleotide interactions and a possible role for inverted nucleobase positioning during product synthesis. We demonstrate that correct nucleotide selection in the CD-NTase donor pocket results in the formation of a thermostable-protein-nucleotide complex, and we extend our analysis to establish specific patterns governing selectivity for each of the major bacterial CD-NTase clades A-H. Our results explain CD-NTase specificity and enable predictions of nucleotide second-messenger signals within diverse antiviral systems.


Asunto(s)
Bacteriófagos/fisiología , Enterobacter cloacae/enzimología , Nucleótidos/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/química , Sistemas de Mensajero Secundario , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...