Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 688: 609-621, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31254827

RESUMEN

The use of tropical grasslands to graze livestock is of high economic importance. Declining grassland soil health leads to reduced sustainability of livestock systems. There are high levels of phenotypic diversity amongst tropical forage grasses. We hypothesise that this variation could lead to significant differences in soil health and that selection of forage cultivars to improve soil health could improve the sustainability of livestock production. We measured and compared key soil health metrics (soil organic carbon (SOC) concentration and sugar / alkane composition, aggregate stability, friability, litter decomposition rates, microbial community composition) under four tropical forage varieties (Brachiaria hybrid cv Mulato (BhMulato), B. humidicola cv Tully (CIAT679; Bh679), B. humidicola cv CIAT16888 (Bh16888), and Panicum maximum CIAT 6962 (Pmax)) and a bare soil control, there was a significant difference in soil aggregate stability, friability and SOC concentration between the forage varieties with soil under Bh679 and Bh16888 tending to have greater aggregate stability, friability and SOC concentrations compared to the soil under BhMulato and Pmax. We identified significant spatial variation in soils under BhMulato and Pmax due to their tussock forming growth habit; when compared to soil from adjacent to the tussocks, soil from the gaps between tussocks had significantly reduced aggregate stability under both species, significantly reduced friability under Pmax and significantly reduced SOC under BhMulato. We found limited impact of forage variety on soil microbial community composition, litter decomposition rates or soil alkane and sugar concentrations.


Asunto(s)
Herbivoria , Microbiología del Suelo , Suelo/química , Animales , Ganado , Microbiota , Poaceae , Clima Tropical
2.
Parasitology ; 146(1): 89-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30086804

RESUMEN

Antibodies at gastrointestinal mucosal membranes play a vital role in immunological protection against a range of pathogens, including helminths. Gastrointestinal health is central to efficient livestock production, and such infections cause significant losses. Fecal samples were taken from 114 cattle, across three beef farms, with matched blood samples taken from 22 of those animals. To achieve fecal antibody detection, a novel fecal supernatant was extracted. Fecal supernatant and serum samples were then analysed, using adapted enzyme-linked immunosorbent assay protocols, for levels of total immunoglobulin (Ig)A, IgG, IgM, and Teladorsagia circumcincta-specific IgA, IgG, IgM and IgE (in the absence of reagents for cattle-specific nematode species). Fecal nematode egg counts were conducted on all fecal samples. Assays performed successfully and showed that IgA was the predominant antibody in fecal samples, whereas IgG was predominant in serum. Total IgA in feces and serum correlated within individuals (0.581, P = 0.005), but other Ig types did not. Results support the hypothesis that the tested protocols are an effective method for the non-invasive assessment of cattle immunology. The method could be used as part of animal health assessments, although further work is required to interpret the relationship between results and levels of infection and immunity.


Asunto(s)
Anticuerpos Antihelmínticos/análisis , Enfermedades de los Bovinos/parasitología , Enfermedades Gastrointestinales/veterinaria , Parasitosis Intestinales/veterinaria , Infecciones por Nematodos/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Granjas , Heces/parasitología , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/parasitología , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Infecciones por Nematodos/inmunología , Infecciones por Nematodos/parasitología , Carne Roja , Reino Unido
3.
Animal ; : 1-11, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650058

RESUMEN

For livestock production systems to play a positive role in global food security, the balance between their benefits and disbenefits to society must be appropriately managed. Based on the evidence provided by field-scale randomised controlled trials around the world, this debate has traditionally centred on the concept of economic-environmental trade-offs, of which existence is theoretically assured when resource allocation is perfect on the farm. Recent research conducted on commercial farms indicates, however, that the economic-environmental nexus is not nearly as straightforward in the real world, with environmental performances of enterprises often positively correlated with their economic profitability. Using high-resolution primary data from the North Wyke Farm Platform, an intensively instrumented farm-scale ruminant research facility located in southwest United Kingdom, this paper proposes a novel, information-driven approach to carry out comprehensive assessments of economic-environmental trade-offs inherent within pasture-based cattle and sheep production systems. The results of a data-mining exercise suggest that a potentially systematic interaction exists between 'soil health', ecological surroundings and livestock grazing, whereby a higher level of soil organic carbon (SOC) stock is associated with a better animal performance and less nutrient losses into watercourses, and a higher stocking density with greater botanical diversity and elevated SOC. We contend that a combination of farming system-wide trials and environmental instrumentation provides an ideal setting for enrolling scientifically sound and biologically informative metrics for agricultural sustainability, through which agricultural producers could obtain guidance to manage soils, water, pasture and livestock in an economically and environmentally acceptable manner. Priority areas for future farm-scale research to ensure long-term sustainability are also discussed.

4.
Sci Total Environ ; 616-617: 1077-1088, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29107375

RESUMEN

Soils deliver crucial ecosystem services, such as climate regulation through carbon (C) storage and food security, both of which are threatened by climate and land use change. While soils are important stores of terrestrial C, anthropogenic impact on the lateral fluxes of C from land to water remains poorly quantified and not well represented in Earth system models. In this study, we tested a novel framework for tracing and quantifying lateral C fluxes from the terrestrial to the aquatic environment at a catchment scale. The combined use of conservative plant-derived geochemical biomarkers n-alkanes and bulk stable δ13C and δ15N isotopes of soils and sediments allowed us to distinguish between particulate organic C sources from different land uses (i.e. arable and temporary grassland vs. permanent grassland vs. riparian woodland vs. river bed sediments) (p<0.001), showing an enhanced ability to distinguish between land use sources as compared to using just n-alkanes alone. The terrestrial-aquatic proxy (TAR) ratio derived from n-alkane signatures indicated an increased input of terrestrial-derived organic matter (OM) to lake sediments over the past 60years, with an increasing contribution of woody vegetation shown by the C27/C31 ratio. This may be related to agricultural intensification, leading to enhanced soil erosion, but also an increase in riparian woodland that may disconnect OM inputs from arable land uses in the upper parts of the study catchment. Spatial variability of geochemical proxies showed a close coupling between OM provenance and riparian land use, supporting the new conceptualization of river corridors (active river channel and riparian zone) as critical zones linking the terrestrial and aquatic C fluxes. Further testing of this novel tracing technique shows promise in terms of quantification of lateral C fluxes as well as targeting of effective land management measures to reduce soil erosion and promote OM conservation in river catchments.

5.
Eur J Soil Sci ; 67(4): 374-385, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27867310

RESUMEN

The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21-ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep-rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land-based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. HIGHLIGHTS: Can meat production systems be developed that are productive yet minimize losses to the environment?The data are from an intensively instrumented capability, which is globally unique and topical.We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses.Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.

6.
Eur J Soil Sci ; 67(4): 421-430, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27478400

RESUMEN

Soil organic carbon (SOC) and nitrogen (N) contents are controlled partly by plant inputs that can be manipulated in agricultural systems. Although SOC and N pools occur mainly in the topsoil (upper 0.30 m), there are often substantial pools in the subsoil that are commonly assumed to be stable. We tested the hypothesis that contrasting long-term management systems change the dynamics of SOC and N in the topsoil and subsoil (to 0.75 m) under temperate conditions. We used an established field experiment in the UK where control grassland was changed to arable (59 years before) and bare fallow (49 years before) systems. Losses of SOC and N were 65 and 61% under arable and 78 and 74% under fallow, respectively, in the upper 0.15 m when compared with the grass land soil, whereas at 0.3-0.6-m depth losses under arable and fallow were 41 and 22% and 52 and 35%, respectively. The stable isotopes 13C and 15N showed the effects of different treatments. Concentrations of long-chain n-alkanes C27, C29 and C31 were greater in soil under grass than under arable and fallow. The dynamics of SOC and N changed in both topsoil and subsoil on a decadal time-scale because of changes in the balance between inputs and turnover in perennial and annual systems. Isotopic and geochemical analyses suggested that fresh inputs and decomposition processes occur in the subsoil. There is a need to monitor and predict long-term changes in soil properties in the whole soil profile if soil is to be managed sustainably. HIGHLIGHTS: Land-use change affects soil organic carbon and nitrogen, but usually the topsoil only is considered.Grassland cultivated to arable and fallow lost 13-78% SOC and N to 0.6 m depth within decades.Isotopic and biomarker analyses suggested changes in delivery and turnover of plant-derived inputs.The full soil profile must be considered to assess soil quality and sustainability.

7.
Sci Total Environ ; 456-457: 181-95, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23602971

RESUMEN

The ingress of particulate material into freshwater spawning substrates is thought to be contributing to the declining success of salmonids reported over recent years for many rivers. Accordingly, the need for reliable information on the key sources of the sediment problem has progressed up the management agenda. Whilst previous work has focussed on apportioning the sources of minerogenic fine sediment degrading spawning habitats, there remains a need to develop procedures for generating corresponding information for the potentially harmful sediment-bound organic matter that represents an overlooked component of interstitial sediment. A source tracing procedure based on composite signatures combining bulk stable (13)C and (15)N isotope values with organic molecular structures detected using near infrared (NIR) reflectance spectroscopy was therefore used to assess the primary sources of sediment-bound organic matter sampled from artificial spawning redds. Composite signatures were selected using a combination of the Kruskal-Wallis H-test, principal component analysis and GA-driven discriminant function analysis. Interstitial sediment samples were collected using time-integrating basket traps which were inserted at the start of the salmonid spawning season and extracted in conjunction with critical phases of fish development (eyeing, hatch, emergence, late spawning). Over the duration of these four basket extractions, the overall relative frequency-weighted average median (±95% confidence limits) source contributions to the interstitial sediment-bound organic matter were estimated to be in the order: instream decaying vegetation (39±<1%; full range 0-77%); damaged road verges (28±<1%; full range 0-77%); septic tanks (22±<1%; full range 0-50%), and; farm yard manures/slurries (11±<1%; full range 0-61%). The reported procedure provides a promising basis for understanding the key sources of interstitial sediment-bound organic matter and can be applied alongside apportionment for the minerogenic component of fine-grained sediment ingressing the benthos. The findings suggest that human septic waste contributes to the interstitial fines ingressing salmonid spawning habitat in the study area.


Asunto(s)
Sedimentos Geológicos/química , Sustancias Húmicas/análisis , Reproducción , Ríos/química , Salmonidae/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Animales , Isótopos de Carbono , Análisis Discriminante , Inglaterra , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Isótopos de Nitrógeno , Análisis de Componente Principal , Reproducción/fisiología , Espectroscopía Infrarroja Corta , Propiedades de Superficie
8.
Isotopes Environ Health Stud ; 41(1): 3-11, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15823853

RESUMEN

Herbivore dung constitutes a substantial input of C to temperate grassland soils, and its fate must be determined in order to fully understand nutrient cycling in this ecosystem. This experiment used changes in bulk delta13C values of the 0-1 cm and 1-5 cm soil horizons of a dung-treated temperate grassland soil to approximate percentage applied dung C incorporation over 372 days. Natural abundance 13C-labelled C4 dung (delta13C - 12.6%) and C3 dung (delta13C - 31.3% were produced in a monitored diet switch from ryegrass silage (delta13C - 30.1%) to maize silage (delta13C - 11.6%). The dung was applied to a C3 grassland (delta13C 0-1 cm - 29.9%, 1-5 cm - 30.6%), and dung remains and soil cores from beneath the treatments were sampled at intervals. delta13C values were used to estimate a maximum of 12% applied dung C incorporation in the top 5 cm of the soil after 112 days, which declined to around 8% at the end of the experiment. A significant increase in percentage applied dung C was observed in the top 1 cm of soil, compared with the 1-5 cm horizon, after a substantial rain event after 30 days. However, results of forage fibre analyses of the two dung types revealed significant differences in composition which may affect subsequent calculations of percentage dung incorporation based on bulk delta13C values.


Asunto(s)
Isótopos de Carbono/análisis , Carbono/metabolismo , Estiércol/análisis , Ensilaje/análisis , Suelo/análisis , Alimentación Animal , Animales , Bovinos , Lolium/metabolismo , Estaciones del Año , Factores de Tiempo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...