Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(12): e0165923, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38092674

RESUMEN

IMPORTANCE: Viruses play a crucial role in microbial ecosystems by liberating nutrients and regulating the growth of their hosts. These effects are governed by viral life history traits, i.e., by the traits determining viral reproduction and survival. Understanding these traits is essential to predicting viral effects, but measuring them is generally labor intensive. In this study, we present efficient methods to quantify the full life cycle of lytic viruses. We developed these methods for viruses infecting unicellular Chlorella algae but expect them to be applicable to other lytic viruses that can be quantified by flow cytometry. By making viral phenotypes accessible, our methods will support research into the diversity and ecological effects of microbial viruses.


Asunto(s)
Chlorella , Rasgos de la Historia de Vida , Phycodnaviridae , Virus , Phycodnaviridae/genética , Ecosistema
2.
Microb Ecol ; 86(4): 2904-2909, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37650927

RESUMEN

Chemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses. To achieve this, we performed choice experiments using chlorovirus and control candidate attractors (virus stabilization buffer and pond water). We quantified the movement of Paramecia grown with or without algal and viral symbionts toward each attractor. All Paramecia showed some chemotaxis toward viruses, but cells without algae and viruses showed the most movement toward viruses. Thus, the endosymbiotic algae (zoochlorellae) appeared to alter the movement of Paramecia toward chloroviruses, but it was not clear that ectosymbiotic viruses (chlorovirus) also had this effect. The change in behavior was consistent with a change in swimming speed, but a change in attraction remains possible. The potential costs and benefits of chemotactic movement toward chloroviruses for either the Paramecia hosts or its symbionts remain unclear.


Asunto(s)
Paramecium , Phycodnaviridae , Quimiotaxis , Simbiosis
3.
Viruses ; 15(6)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376640

RESUMEN

Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus.


Asunto(s)
Chlorella , Paramecium , Phycodnaviridae , ADN Viral/genética , Phycodnaviridae/genética , Proteínas Virales/genética
4.
J Virol ; 97(5): e0027523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133447

RESUMEN

Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.


Asunto(s)
Chlorella , Cadena Alimentaria , Phycodnaviridae , Evolución Biológica , Chlorella/virología
5.
Viruses ; 15(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112891

RESUMEN

Viruses face many challenges on their road to successful replication, and they meet those challenges by reprogramming the intracellular environment. Two major issues challenging Paramecium bursaria chlorella virus 1 (PBCV-1, genus Chlorovirus, family Phycodnaviridae) at the level of DNA replication are (i) the host cell has a DNA G+C content of 66%, while the virus is 40%; and (ii) the initial quantity of DNA in the haploid host cell is approximately 50 fg, yet the virus will make approximately 350 fg of DNA within hours of infection to produce approximately 1000 virions per cell. Thus, the quality and quantity of DNA (and RNA) would seem to restrict replication efficiency, with the looming problem of viral DNA synthesis beginning in only 60-90 min. Our analysis includes (i) genomics and functional annotation to determine gene augmentation and complementation of the nucleotide biosynthesis pathway by the virus, (ii) transcriptional profiling of these genes, and (iii) metabolomics of nucleotide intermediates. The studies indicate that PBCV-1 reprograms the pyrimidine biosynthesis pathway to rebalance the intracellular nucleotide pools both qualitatively and quantitatively, prior to viral DNA amplification, and reflects the genomes of the progeny virus, providing a successful road to virus infection.


Asunto(s)
Chlorella , Phycodnaviridae , ADN Viral/genética , ADN Viral/metabolismo , Nucleótidos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(1): e2215000120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574690

RESUMEN

Viruses impact host cells and have indirect effects on ecosystem processes. Plankton such as ciliates can reduce the abundance of virions in water, but whether virus consumption translates into demographic consequences for the grazers is unknown. Here, we show that small protists not only can consume viruses they also can grow and divide given only viruses to eat. Moreover, the ciliate Halteria sp. foraging on chloroviruses displays dynamics and interaction parameters that are similar to other microbial trophic interactions. These results suggest that the effect of viruses on ecosystems extends beyond (and in contrast to) the viral shunt by redirecting energy up food chains.


Asunto(s)
Cadena Alimentaria , Virus , Ecosistema , Plancton , Eucariontes
7.
Nat Commun ; 13(1): 6476, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309542

RESUMEN

Giant viruses are a large group of viruses that infect many eukaryotes. Although components that do not obey the overall icosahedral symmetry of their capsids have been observed and found to play critical roles in the viral life cycles, identities and high-resolution structures of these components remain unknown. Here, by determining a near-atomic-resolution, five-fold averaged structure of Paramecium bursaria chlorella virus 1, we unexpectedly found the viral capsid possesses up to five major capsid protein variants and a penton protein variant. These variants create varied capsid microenvironments for the associations of fibers, a vesicle, and previously unresolved minor capsid proteins. Our structure reveals the identities and atomic models of the capsid components that do not obey the overall icosahedral symmetry and leads to a model for how these components are assembled and initiate capsid assembly, and this model might be applicable to many other giant viruses.


Asunto(s)
Chlorella , Virus Gigantes , Paramecium , Phycodnaviridae , Phycodnaviridae/genética , Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/química
8.
Front Neurol ; 13: 821166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280283

RESUMEN

Background: Genetically polymorphic Superoxide Dismutase 1 G93A (SOD1-G93A) underlies one form of familial Amyotrophic Lateral Sclerosis (ALS). Exposures from viruses may also contribute to ALS, possibly by stimulating immune factors, such as IL-6, Interferon Stimulated Genes, and Nitric Oxide. Recently, chlorovirus ATCV-1, which encodes a SOD1, was shown to replicate in macrophages and induce inflammatory factors. Objective: This study aimed to determine if ATCV-1 influences development of motor degeneration in an ALS mouse model and to assess whether SOD1 of ATCV-1 influences production of inflammatory factors from macrophages. Methods: Sera from sporadic ALS patients were screened for antibody to ATCV-1. Active or inactivated ATCV-1, saline, or a viral mimetic, polyinosinic:polycytidylic acid (poly I:C) were injected intracranially into transgenic mice expressing human SOD1-G93A- or C57Bl/6 mice. RAW264.7 mouse macrophage cells were transfected with a plasmid vector expressing ATCV-1 SOD1 or an empty vector prior to stimulation with poly I:C with or without Interferon-gamma (IFN-γ). Results: Serum from sporadic ALS patients had significantly more IgG1 antibody directed against ATCV-1 than healthy controls. Infection of SOD1-G93A mice with active ATCV-1 significantly accelerated onset of motor loss, as measured by tail paralysis, hind limb tucking, righting reflex, and latency to fall in a hanging cage-lid test, but did not significantly affect mortality when compared to saline-treated transgenics. By contrast, poly I:C treatment significantly lengthened survival time but only minimally slowed onset of motor loss, while heat-inactivated ATCV-1 did not affect motor loss or survival. ATCV-1 SOD1 significantly increased expression of IL-6, IL-10, ISG promoter activity, and production of Nitric Oxide from RAW264.7 cells. Conclusion: ATCV-1 chlorovirus encoding an endogenous SOD1 accelerates pathogenesis but not mortality, while poly I:C that stimulates antiviral immune responses delays mortality in an ALS mouse model. ATCV-1 SOD1 enhances induction of inflammatory factors from macrophages.

9.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34522049

RESUMEN

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Asunto(s)
Genoma Viral , Fenotipo , Virus/clasificación , Virus/genética , Genotipo , Humanos , Virión/genética , Replicación Viral/genética
10.
J Virol ; 96(2): e0136721, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34669449

RESUMEN

Chloroviruses (family Phycodnaviridae) are large double-stranded DNA (dsDNA) viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG, and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. Totals of 368, 268, and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportions of functionally characterized COGs composing the pan-genome and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core genome. Bipartite network construction evidencing the COG sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. IMPORTANCE Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here, we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.


Asunto(s)
Genoma Viral , Phycodnaviridae/genética , Chlorella/clasificación , Chlorella/virología , ADN Viral/genética , Variación Genética , Genoma Viral/genética , Genómica , Especificidad del Huésped , Phycodnaviridae/clasificación , Phycodnaviridae/aislamiento & purificación , Filogenia , Proteínas Virales/genética
11.
Microorganisms ; 9(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683491

RESUMEN

Chloroviruses are large viruses that replicate in chlorella-like green algae and normally exist as mutualistic endosymbionts (referred to as zoochlorellae) in protists such as Paramecium bursaria. Chlorovirus populations rise and fall in indigenous waters through time; however, the factors involved in these virus fluctuations are still under investigation. Chloroviruses attach to the surface of P. bursaria but cannot infect their zoochlorellae hosts because the viruses cannot reach the zoochlorellae as long as they are in the symbiotic phase. Predators of P. bursaria, such as copepods and didinia, can bring chloroviruses into contact with zoochlorellae by disrupting the paramecia, which results in an increase in virus titers in microcosm experiments. Here, we report that another predator of P. bursaria, Bursaria truncatella, can also increase chlorovirus titers. After two days of foraging on P. bursaria, B. truncatella increased infectious chlorovirus abundance about 20 times above the controls. Shorter term foraging (3 h) resulted in a small increase of chlorovirus titers over the controls and more foraging generated more chloroviruses. Considering that B. truncatella does not release viable zoochlorellae either during foraging or through fecal pellets, where zoochlorellae could be infected by chlorovirus, we suggest a third pathway of predator virus catalysis. By engulfing the entire protist and digesting it slowly, virus replication can occur within the predator and some of the virus is passed out through a waste vacuole. These results provide additional support for the hypothesis that predators of P. bursaria are important drivers of chlorovirus population sizes and dynamics.

12.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924931

RESUMEN

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Asunto(s)
Pared Celular/metabolismo , Chlorella/metabolismo , Chlorella/virología , ADN Ligasas/metabolismo , Interacciones Huésped-Patógeno , Phycodnaviridae/fisiología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Clorofila/metabolismo , ADN Ligasas/química , ADN Ligasas/genética , Activación Enzimática , Phycodnaviridae/clasificación , Phycodnaviridae/genética , Phycodnaviridae/ultraestructura , Filogenia , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/genética , Virión , Acoplamiento Viral
13.
Viruses ; 12(10)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081353

RESUMEN

Viruses rely on their host's translation machinery for the synthesis of their own proteins. Problems belie viral translation when the host has a codon usage bias (CUB) that is different from an infecting virus due to differences in the GC content between the host and virus genomes. Here, we examine the hypothesis that chloroviruses adapted to host CUB by acquisition and selection of tRNAs that at least partially favor their own CUB. The genomes of 41 chloroviruses comprising three clades, each infecting a different algal host, have been sequenced, assembled and annotated. All 41 viruses not only encode tRNAs, but their tRNA genes are located in clusters. While differences were observed between clades and even within clades, seven tRNA genes were common to all three clades of chloroviruses, including the tRNAArg gene, which was found in all 41 chloroviruses. By comparing the codon usage of one chlorovirus algal host, in which the genome has been sequenced and annotated (67% GC content), to that of two of its viruses (40% GC content), we found that the viruses were able to at least partially overcome the host's CUB by encoding tRNAs that recognize AU-rich codons. Evidence presented herein supports the hypothesis that a chlorovirus tRNA cluster was present in the most recent common ancestor (MRCA) prior to divergence into three clades. In addition, the MRCA encoded a putative isoleucine lysidine synthase (TilS) that remains in 39/41 chloroviruses examined herein, suggesting a strong evolutionary pressure to retain the gene. TilS alters the anticodon of tRNAMet that normally recognizes AUG to then recognize AUA, a codon for isoleucine. This is advantageous to the chloroviruses because the AUA codon is 12-13 times more common in the chloroviruses than their host, further helping the chloroviruses to overcome CUB. Among large DNA viruses infecting eukaryotes, the presence of tRNA genes and tRNA clusters appear to be most common in the Phycodnaviridae and, to a lesser extent, in the Mimiviridae.


Asunto(s)
Uso de Codones , Variación Genética , Genoma Viral , Phycodnaviridae/genética , ARN de Transferencia/genética , Codón , Cianobacterias/virología , Interacciones Microbiota-Huesped , Familia de Multigenes , Phycodnaviridae/clasificación , Filogenia
14.
Viruses ; 12(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878033

RESUMEN

Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.


Asunto(s)
Chlorella/virología , Phycodnaviridae/fisiología , Fenómenos Fisiológicos de los Virus , Biotecnología , Regulación Viral de la Expresión Génica , Genoma Viral , Genómica/métodos , Estadios del Ciclo de Vida , Phycodnaviridae/ultraestructura , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
15.
Microbiol Resour Announc ; 8(12)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30938697

RESUMEN

The Nebraska Sandhills region contains over 1,500 geochemically diverse interdunal lakes, some of which are potassium rich, alkaline, and hypersaline. Here, we report 16S rRNA amplicon pyrosequencing data on the water and sediment microbial communities of eight alkaline lakes in the Sandhills of western Nebraska.

16.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626679

RESUMEN

Chloroviruses exist in aquatic systems around the planet and they infect certain eukaryotic green algae that are mutualistic endosymbionts in a variety of protists and metazoans. Natural chlorovirus populations are seasonally dynamic, but the precise temporal changes in these populations and the mechanisms that underlie them have heretofore been unclear. We recently reported the novel concept that predator/prey-mediated virus activation regulates chlorovirus population dynamics, and in the current study, we demonstrate virus-packaged chemotactic modulation of prey behavior.IMPORTANCE Viruses have not previously been reported to act as chemotactic/chemoattractive agents. Rather, viruses as extracellular entities are generally viewed as non-metabolically active spore-like agents that await further infection events upon collision with appropriate host cells. That a virus might actively contribute to its fate via chemotaxis and change the behavior of an organism independent of infection is unprecedented.


Asunto(s)
Virus ADN/genética , Interacciones Microbiota-Huesped/genética , Phycodnaviridae/genética , Dinámica Poblacional
17.
Viruses ; 10(10)2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347809

RESUMEN

Chloroviruses (family Phycodnaviridae) are dsDNA viruses found throughout the world's inland waters. The open reading frames in the genomes of 41 sequenced chloroviruses (330 ± 40 kbp each) representing three virus types were analyzed for evidence of evolutionarily conserved local genomic "contexts", the organization of biological information into units of a scale larger than a gene. Despite a general loss of synteny between virus types, we informatically detected a highly conserved genomic context defined by groups of three or more genes that we have termed "gene gangs". Unlike previously described local genomic contexts, the definition of gene gangs requires only that member genes be consistently co-localized and are not constrained by strand, regulatory sites, or intervening sequences (and therefore represent a new type of conserved structural genomic element). An analysis of functional annotations and transcriptomic data suggests that some of the gene gangs may organize genes involved in specific biochemical processes, but that this organization does not involve their coordinated expression.


Asunto(s)
Familia de Multigenes , Phycodnaviridae/genética , Proteínas Virales/genética , Secuencia de Bases , Evolución Molecular , Genoma Viral , Sistemas de Lectura Abierta , Phycodnaviridae/clasificación , Filogenia , Sintenía
18.
Microb Ecol ; 75(4): 847-853, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29119315

RESUMEN

Many chloroviruses replicate in endosymbiotic zoochlorellae that are protected from infection by their symbiotic host. To reach the high virus concentrations that often occur in natural systems, a mechanism is needed to release zoochlorellae from their hosts. We demonstrate that the ciliate predator Didinium nasutum foraging on zoochlorellae-bearing Paramecium bursaria can release live zoochlorellae from the ruptured prey cell that can then be infected by chloroviruses. The catalysis process is very effective, yielding roughly 95% of the theoretical infectious virus yield as determined by sonication of P. bursaria. Chlorovirus activation is more effective with smaller Didinia, as larger Didinia typically consume entire P. bursaria cells without rupturing them, precluding the release of zoochlorellae. We also show that the timing of Chlorovirus growth is tightly linked to the predator-prey cycle between Didinium and Paramecium, with the most rapid increase in chloroviruses temporally linked to the peak foraging rate of Didinium, supporting the idea that predator-prey cycles can drive cycles of Chlorovirus abundance.


Asunto(s)
Cilióforos/fisiología , Interacciones Huésped-Patógeno/fisiología , Paramecium/virología , Phycodnaviridae/fisiología , Conducta Predatoria , Simbiosis , Animales , Catálisis , Chlorella/virología , Virus ADN , Cadena Alimentaria , Phycodnaviridae/crecimiento & desarrollo , Dinámica Poblacional
19.
Viruses ; 9(4)2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28441734

RESUMEN

Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.


Asunto(s)
Chlorella/virología , Genes Virales , Redes y Vías Metabólicas , Phycodnaviridae/genética , Phycodnaviridae/fisiología , Metabolismo de los Hidratos de Carbono
20.
Viruses ; 9(3)2017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28335474

RESUMEN

Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses-EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain "Best BLAST hit" analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.


Asunto(s)
Phycodnaviridae/genética , Ecosistema , Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Variación Genética , Tamaño del Genoma , Genoma Viral , Haptophyta/virología , Phycodnaviridae/clasificación , Phycodnaviridae/fisiología , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...