Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Haematologica ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450513

RESUMEN

Mitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.

2.
Proc Natl Acad Sci U S A ; 119(40): e2210779119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161945

RESUMEN

Stem cell transplantation and genetic therapies offer potential cures for patients with sickle cell disease (SCD), but these options require advanced medical facilities and are expensive. Consequently, these treatments will not be available for many years to the majority of patients suffering from this disease. What is urgently needed now is an inexpensive oral drug in addition to hydroxyurea, the only drug approved by the FDA that inhibits sickle-hemoglobin polymerization. Here, we report the results of the first phase of our phenotypic screen of the 12,657 compounds of the Scripps ReFRAME drug repurposing library using a recently developed high-throughput assay to measure sickling times following deoxygenation to 0% oxygen of red cells from sickle trait individuals. The ReFRAME library is a very important collection because the compounds are either FDA-approved drugs or have been tested in clinical trials. From dose-response measurements, 106 of the 12,657 compounds exhibit statistically significant antisickling at concentrations ranging from 31 nM to 10 µM. Compounds that inhibit sickling of trait cells are also effective with SCD cells. As many as 21 of the 106 antisickling compounds emerge as potential drugs. This estimate is based on a comparison of inhibitory concentrations with free concentrations of oral drugs in human serum. Moreover, the expected therapeutic potential for each level of inhibition can be predicted from measurements of sickling times for cells from individuals with sickle syndromes of varying severity. Our results should motivate others to develop one or more of these 106 compounds into drugs for treating SCD.


Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Reposicionamiento de Medicamentos , Hemoglobina Falciforme , Humanos , Hidroxiurea/farmacología , Oxígeno/uso terapéutico
3.
Blood ; 140(19): 2053-2062, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35576529

RESUMEN

Polymerization of deoxygenated hemoglobin S underlies the pathophysiology of sickle cell disease (SCD). In activating red blood cell pyruvate kinase and glycolysis, mitapivat (AG-348) increases adenosine triphosphate (ATP) levels and decreases the 2,3-diphosphoglycerate (2,3-DPG) concentration, an upstream precursor in glycolysis. Both changes have therapeutic potential for patients with SCD. Here, we evaluated the safety and tolerability of multiple ascending doses of mitapivat in adults with SCD with no recent blood transfusions or changes in hydroxyurea or l-glutamine therapy. Seventeen subjects were enrolled; 1 subject was withdrawn shortly after starting the study. Sixteen subjects completed 3 ascending dose levels of mitapivat (5, 20, and 50 mg, twice daily [BID]) for 2 weeks each; following a protocol amendment, the dose was escalated to 100 mg BID in 9 subjects. Mitapivat was well tolerated at all dose levels, with the most common treatment-emergent adverse events (AEs) being insomnia, headache, and hypertension. Six serious AEs (SAEs) included 4 vaso-occlusive crises (VOCs), non-VOC-related shoulder pain, and a preexisting pulmonary embolism. Two VOCs occurred during drug taper and were possibly drug related; no other SAEs were drug related. Mean hemoglobin increase at the 50 mg BID dose level was 1.2 g/dL, with 9 of 16 (56.3%) patients achieving a hemoglobin response of a ≥1 g/dL increase compared with baseline. Mean reductions in hemolytic markers and dose-dependent decreases in 2,3-DPG and increases in ATP were also observed. This study provides proof of concept that mitapivat has disease-modifying potential in patients with SCD. This trial was registered at www.clinicaltrials.gov as #NCT04000165.


Asunto(s)
Anemia de Células Falciformes , Piruvato Quinasa , Adulto , Humanos , Ácido Pirúvico , 2,3-Difosfoglicerato , Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobinas , Adenosina Trifosfato
4.
Blood ; 138(13): 1172-1181, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34197597

RESUMEN

The issue of treating sickle cell disease with drugs that increase hemoglobin oxygen affinity has come to the fore with the US Food and Drug Administration approval in 2019 of voxelotor, the only antisickling drug approved since hydroxyurea in 1998. Voxelotor reduces sickling by increasing the concentration of the nonpolymerizing, high oxygen affinity R (oxy) conformation of hemoglobin S (HbS). Treatment of sickle cell patients with voxelotor increases Hb levels and decreases indicators of hemolysis, but with no indication as yet that it reduces the frequency of pain episodes. In this study, we used the allosteric model of Monod, Wyman, and Changeux to simulate whole-blood oxygen dissociation curves and red cell sickling in the absence and presence of voxelotor under the in vivo conditions of rapid oxygen pressure decreases. Our modeling agrees with results of experiments using a new robust assay, which shows the large, expected decrease in sickling from the drug. The modeling indicates, however, that the increase in oxygen delivery from reduced sickling is largely offset by the increase in oxygen affinity. The net result is that the drug increases overall oxygen delivery only at the very lowest oxygen pressures. However, reduction of sickling mitigates red cell damage and explains the observed decrease in hemolysis. More importantly, our modeling of in vivo oxygen dissociation, sickling, and oxygen delivery suggests that drugs that increase fetal Hb or decrease mean corpuscular hemoglobin concentration (MCHC) should be more therapeutically effective than drugs that increase oxygen affinity.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/uso terapéutico , Benzaldehídos/uso terapéutico , Hemoglobina Falciforme/metabolismo , Oxígeno/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/metabolismo , Antidrepanocíticos/farmacología , Benzaldehídos/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Modelos Moleculares , Oxígeno/sangre , Pirazinas/farmacología , Pirazoles/farmacología
5.
Proc Natl Acad Sci U S A ; 117(26): 15018-15027, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32527859

RESUMEN

The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/química , Oxígeno/metabolismo , Regulación Alostérica , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxígeno/química
6.
Biochemistry ; 57(46): 6470-6478, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30375231

RESUMEN

It is now recognized that many amyloid-forming proteins can associate into multiple fibril structures. Here, we use two-dimensional infrared spectroscopy to study two fibril polymorphs formed by human islet amyloid polypeptide (hIAPP or amylin), which is associated with type 2 diabetes. The polymorphs exhibit different degrees of structural organization near the loop region of hIAPP fibrils. The relative populations of these polymorphs are systematically altered by the presence of macrocyclic peptides which template ß-sheet formation at specific sections of the hIAPP sequence. These experiments are consistent with polymorphs that result from competing pathways for fibril formation and that the macrocycles bias hIAPP aggregation toward one pathway or the other. Another macrocyclic peptide that matches the loop region but extends the lag time leaves the relative populations of the polymorphs unaltered, suggesting that the branching point for structural divergence occurs after the lag phase, when the oligomers convert into seeds that template fibril formation. Thus, we conclude that the structures of the polymorphs stem from restricting oligomers along diverging folding pathways, which has implications for drug inhibition, cytotoxicity, and the free energy landscape of hIAPP aggregation.


Asunto(s)
Agonistas de los Receptores de Amilina/química , Amiloide/química , Polipéptido Amiloide de los Islotes Pancreáticos/química , Conformación Proteica , Humanos , Espectrofotometría Infrarroja
7.
J Phys Chem B ; 122(49): 11579-11590, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30179501

RESUMEN

The polymerization of the mutant hemoglobin S upon deoxygenation to form fibers in red blood cells of patients suffering from sickle-cell anemia results in changes in cell shape and rigidity, also known as sickling, which underlie the pathology of the disease. While much has been learned about the fundamental physical chemistry of the polymerization process, transferring these insights to sickling of red cells under in vivo conditions requires being able to monitor, and ultimately predict, the time course of cellular sickling under physiological conditions of deoxygenation. To this end, we have developed an experimental technique for tracking the temporal evolution of the sickling of red blood cells under laboratory deoxygenation conditions, based on the automated analysis of sequences of microscope images and machine-learning analysis to characterize cell morphology. As an aid in the quantitative understanding of these experiments, we have developed a computational framework for simulating the time dependence of sickling in populations of red blood cells which incorporates the current theoretical and empirical understanding of the physical chemistry of the sickling process. In order to apply these techniques to our experiments, we have theoretically determined the time course of deoxygenation by solving the diffusion equation for oxygen in our experimental geometry. With this combined description, we are able to reproduce our experimentally observed kinetics of sickling, suggesting that our theoretical approach should be applicable to physiological deoxygenation scenarios.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/biosíntesis , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Difusión , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Tamaño de la Partícula , Polimerizacion
8.
Proc Natl Acad Sci U S A ; 114(5): E689-E696, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096387

RESUMEN

Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.


Asunto(s)
Antidrepanocíticos/farmacología , Tamaño de la Célula/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Furaldehído/análogos & derivados , Anemia de Células Falciformes/terapia , Eritrocitos/fisiología , Furaldehído/farmacología , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxígeno
9.
J Phys Chem B ; 119(44): 14065-75, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26446575

RESUMEN

Transition dipoles are an underutilized quantity for probing molecular structures. The transition dipole strengths in an extended system like a protein are modulated by the couplings and thus probe the structures. Here we measure the absolute transition dipole strengths of human and rat amylin in their solution, aggregated, membrane, and micelleular bound forms, using a combination of 1D and 2D infrared spectroscopy. We find that the vibrational modes of amyloid fibers made of human amylin can extend across as many as 12 amino acids, reflecting very ordered ß-sheets in the most carefully prepared samples. Rat amylin has FTIR spectra that are nearly identical in solution, micelles, and membranes. We show that the transition dipoles of rat amylin are much larger when bound to micelles and membranes than when in solution, consistent with rat amylin adopting an α-helical structure. We interpret the transition dipole strengths as experimental measurements of the inverse participation ratio often calculated in theoretical studies. The structure of aggregating and membrane-bound proteins can be difficult to identify with existing techniques, especially during kinetics. These results demonstrate how absolute transition dipoles measured via our 1D/2D spectroscopy method can provide important structural information.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/química , Animales , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/síntesis química , Tamaño de la Partícula , Estructura Secundaria de Proteína , Ratas , Espectroscopía Infrarroja por Transformada de Fourier
10.
Proc Natl Acad Sci U S A ; 110(48): 19285-90, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218609

RESUMEN

Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel ß-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize ß-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric ß-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.


Asunto(s)
Amiloide/biosíntesis , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Humanos , Marcaje Isotópico , Simulación de Dinámica Molecular , Mutación/genética , Pliegue de Proteína , Espectrofotometría Infrarroja
11.
J Phys Chem B ; 117(49): 15297-305, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23659731

RESUMEN

A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Hidrógeno/química , Espectrofotometría Infrarroja , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/metabolismo , Isótopos de Carbono/química , Deuterio/química , Medición de Intercambio de Deuterio , Isoleucina/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Isótopos de Oxígeno/química , Proteínas/química , Proteínas/metabolismo
12.
J Am Chem Soc ; 134(30): 12658-67, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22734583

RESUMEN

Deamidation of asparagine and glutamine is the most common nonenzymatic, post-translational modification. Deamidation can influence the structure, stability, folding, and aggregation of proteins and has been proposed to play a role in amyloid formation. However there are no structural studies of the consequences of deamidation on amyloid fibers, in large part because of the difficulty of studying these materials using conventional methods. Here we examine the effects of deamidation on the kinetics of amyloid formation by amylin, the causative agent of type 2 diabetes. We find that deamidation accelerates amyloid formation and the deamidated material is able to seed amyloid formation by unmodified amylin. Using site-specific isotope labeling and two-dimensional infrared (2D IR) spectroscopy, we show that fibers formed by samples that contain deamidated polypeptide contain reduced amounts of ß-sheet. Deamidation leads to disruption of the N-terminal ß-sheet between Ala-8 and Ala-13, but ß-sheet is still retained near Leu-16. The C-terminal sheet is disrupted near Leu-27. Analysis of potential sites of deamidation together with structural models of amylin fibers reveals that deamidation in the N-terminal ß-sheet region may be the cause for the disruption of the fiber structure at both the N- and C-terminal ß-sheet. Thus, deamidation is a post-translational modification that creates fibers that have an altered structure but can still act as a template for amylin aggregation. Deamidation is very difficult to detect with standard methods used to follow amyloid formation, but isotope-labeled IR spectroscopy provides a means for monitoring sample degradation and investigating the structural consequences of deamidation.


Asunto(s)
Amidas/metabolismo , Amiloide/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Amidas/química , Amiloide/química , Amiloide/ultraestructura , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja
13.
J Phys Chem Lett ; 2(18): 2357-2361, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21966585

RESUMEN

We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril ß-sheets. Isotope labeling with (13)C(18)O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...