Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 42(4): e96-e114, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35139658

RESUMEN

BACKGROUND: Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. METHODS: We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. RESULTS: A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. CONCLUSIONS: Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.


Asunto(s)
Conexina 43 , Pericitos , Animales , Diferenciación Celular , Conexina 43/genética , Conexinas/genética , Células Endoteliales , Ratones
2.
Methods Mol Biol ; 2422: 65-74, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34859399

RESUMEN

Immunohistochemistry (IHC) offers a valuable method for determining the spatial distribution of proteins in cells and tissues. Fixation of tissues prior IHC enables their long-term stability and preserves tissue morphology; however, downstream analysis of protein localization within fixed samples can be complicated by cross-links formed between proteins during formalin fixation which mask target epitopes. Antigen Retrieval (AR) is a process introduced to reverse such cross-links, improving the sensitivity of antibody-based protein detection, and can be performed using protease- or heat-based approaches. Even following AR, low abundance target proteins may require additional amplification for sensitive visualization. The development of amplification approaches such as the use of biotinylated secondary antibodies with avidin-biotin complex and tyramide signal amplification greatly improve the sensitivity of IHC, enabling a wider range of epitopes to be detected when coupled with AR.


Asunto(s)
Inmunohistoquímica , Antígenos , Avidina , Epítopos , Formaldehído , Fijación del Tejido
3.
Methods Mol Biol ; 2422: 163-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34859405

RESUMEN

Visualization of proteins within a tissue sample via immunohistochemistry (IHC) is a central aspect of pathology. However, such methods are limited to the detection of one or two proteins, due to the overlapping absorption/emission spectra of chromogens and fluorescent dyes. The advent of spectral microscopy has enabled improved visualization of multiple proteins by allowing for the specific light wavelengths/spectral signatures of individual fluorophores and chromogens to be unmixed and analyzed, thus detecting signals that would be indistinguishable with conventional microscopy. Combined with improvements to multiplexed immunohistochemistry (mIHC) protocols, spectral microscopy facilitates the interrogation of spatial relationships between four (enzymatic mIHC) or seven (fluorescent mIHC) proteins, unlocking the wealth of information contained within a single tissue section. Furthermore, the application of linear unmixing for image analysis allows for a reduction in background signal associated with tissue autofluorescence and can distinguish chromogens with similar absorption spectra to identify protein colocalization in brightfield spectral microscopy. While many mIHC protocols have been optimized for spectral microscopy, this chapter will focus in detail on two common methods: enzymatic mIHC and manual fluorescent mIHC using tyramide signal amplification and microwave technology.


Asunto(s)
Microscopía Fluorescente , Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica
4.
Methods Mol Biol ; 2422: 263-269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34859412

RESUMEN

DNA damage is a common event that occurs during the life span of the majority of cells, as a result of aberrant energy metabolism, exposure to radiation, DNA damaging chemicals, and viral infections. Rapid, sensitive, and economical methods for the detection of DNA damage offer valuable insights into DNA repair, drug genotoxicity, and biomonitoring. The comet assay, or single cell electrophoresis, has emerged as a popular method for detecting single- and double-stranded DNA breaks in single cells. This experimental technique is based on the fact that, when exposed to an electric current, damaged DNA fragments in a gel, migrate farther from the nucleus toward the anode resulting in the shape of a comet. This assay is versatile, quantitative, simple to perform and exhibits high sensitivity; however, consistent experimental conditions must be maintained to ensure assay reproducibility. Electrophoresis can be performed under neutral conditions to detect solely double stranded breaks, or under alkaline conditions to detect both single- and double-stranded breaks. This chapter describes the protocol for both alkaline and neutral comet assays.


Asunto(s)
Ensayo Cometa , Daño del ADN , ADN , Roturas del ADN de Doble Cadena , Reproducibilidad de los Resultados
5.
Front Immunol ; 12: 695972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34341659

RESUMEN

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Asunto(s)
COVID-19/inmunología , Granulocitos/inmunología , Células Supresoras de Origen Mieloide/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antivirales/administración & dosificación , Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Arginina/administración & dosificación , Arginina/sangre , Arginina/metabolismo , Infecciones Asintomáticas , COVID-19/sangre , COVID-19/diagnóstico , Estudios de Casos y Controles , Quimioterapia Combinada/métodos , Inhibidores Enzimáticos/administración & dosificación , Femenino , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Linfocitos T/inmunología , Tratamiento Farmacológico de COVID-19
6.
Circulation ; 144(5): 382-392, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33928785

RESUMEN

BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Susceptibilidad a Enfermedades , Eliminación de Secuencia , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Biomarcadores , Cardiomiopatías/diagnóstico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Manejo de la Enfermedad , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Terapia Molecular Dirigida , Contracción Miocárdica/efectos de los fármacos , Análisis de la Célula Individual , Transcriptoma
7.
medRxiv ; 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33791717

RESUMEN

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19, that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of Granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1 + G-MDSC (Arg + G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg + G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.

8.
Sci Rep ; 10(1): 21246, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277589

RESUMEN

Current cancer biomarkers present variability in their predictive power and demonstrate limited clinical efficacy, possibly due to the lack of functional relevance of biomarker genes to cancer progression. To address this challenge, a biomarker discovery pipeline was developed to integrate gene expression profiles from The Cancer Genome Atlas and essential survival gene datasets from The Cancer Dependency Map, the latter of which catalogs genes driving cancer progression. By applying this pipeline to lung adenocarcinoma, lung squamous cell carcinoma, and glioblastoma, genes highly associated with cancer progression were identified and designated as progression gene signatures (PGSs). Analysis of area under the receiver operating characteristics curve revealed that PGSs predicted patient survival more accurately than previously identified cancer biomarkers. Moreover, PGSs stratified patients with high risk for progressive disease indicated by worse prognostic outcomes, increased frequency of cancer progression, and poor responses to chemotherapy. The robust performance of these PGSs were recapitulated in four independent microarray datasets from Gene Expression Omnibus and were further verified in six freshly dissected tumors from glioblastoma patients. Our results demonstrate the power of an integrated approach to cancer biomarker discovery and the possibility of implementing PGSs into clinical biomarker tests.


Asunto(s)
Biomarcadores de Tumor/análisis , Perfilación de la Expresión Génica/métodos , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Pronóstico , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...