Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Educ ; 96(11): 2606-2610, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34079146

RESUMEN

Protein structure, function, and signaling are a large portion of biochemistry. Because of this, proteins are often used as model systems in biochemistry laboratory courses, where a course-long project might comprise protein expression, purification, and characterization. Two common protein expression methods are isopropyl ß-d-1-thiogalactopyranoside (IPTG) induction, which utilizes easy-to-make media but requires extensive cell-growth monitoring that is time-intensive, and autoinduction, which employs multicomponent media that are time-consuming to make but require no cell-growth monitoring. A protein expression method that is a hybrid of IPTG induction and autoinduction is presented. The hybrid method utilizes the medium of IPTG induction and the no-cell-growth-monitoring induction process of autoinduction, saving hands-on time in the protein expression phase to allow more time for protein characterization while still having students execute each step.

2.
ACS Omega ; 3(11): 16309-16313, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30533586

RESUMEN

An improved and high yielding three-step synthesis for the production of 2-trifluoromethyl-10-aminopropylphenothiazine (TAPP) using less hazardous and more inexpensive reagents, its coupling to Sepharose-4B resin, and its ability to purify calmodulin are described. The overall yield of TAPP, starting with 3-aminopropyl bromide hydrobromide and 2-(trifluoromethyl)phenothiazine, was 96%.

3.
Biochemistry ; 53(36): 5779-90, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25144868

RESUMEN

Calcineurin is an essential serine/threonine phosphatase that plays vital roles in neuronal development and function, heart growth, and immune system activation. Calcineurin is unique in that it is the only phosphatase known to be activated by calmodulin in response to increasing intracellular calcium concentrations. Calcium-loaded calmodulin binds to the regulatory domain of calcineurin, resulting in a conformational change that removes an autoinhibitory domain from the active site of the phosphatase. We have determined a 1.95 Å crystal structure of calmodulin bound to a peptide corresponding to its binding region from calcineurin. In contrast to previous structures of this complex, our structure has a stoichiometry of 1:1 and has the canonical collapsed, wraparound conformation observed for many calmodulin-substrate complexes. In addition, we have used size-exclusion chromatography and time-resolved fluorescence to probe the stoichiometry of binding of calmodulin to a construct corresponding to almost the entire regulatory domain from calcineurin, again finding a 1:1 complex. Taken in sum, our data strongly suggest that a single calmodulin protein is necessary and sufficient to bind to and activate each calcineurin enzyme.


Asunto(s)
Calcineurina/metabolismo , Calmodulina/metabolismo , Secuencia de Bases , Calcineurina/química , Calmodulina/química , Cromatografía en Gel , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Humanos , Conformación Molecular , Espectrometría de Fluorescencia
4.
Biochemistry ; 52(48): 8643-51, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24191726

RESUMEN

Calcineurin (CaN) is a calmodulin-activated, serine/threonine phosphatase that is necessary for cardiac, vasculature, and nervous system development, as well as learning and memory, skeletal muscle growth, and immune system activation. CaN is activated in a manner similar to that of the calmodulin (CaM)-activated kinases. CaM binds CaN's regulatory domain (RD) and causes a conformational change that removes CaN's autoinhibitory domain (AID) from its catalytic site, activating CaN. In the CaM-activated kinases, the CaM binding region (CaMBR) is located just C-terminal to the AID, whereas in CaN, the AID is 52 residues C-terminal to the CaMBR. Previously published data have shown that these 52 residues in CaN's RD are disordered but approximately half of them gain structure, likely α-helical, upon CaM binding. In this work, we confirm that this increase in the level of structure is α-helical. We posit that this region forms an amphipathic helix upon CaM binding and folds onto the remainder of the RD:CaM complex, removing the AID. Förster resonance energy transfer data suggest the C-terminal end of this distal helix is relatively close to the N-terminal end of the CaMBR when the RD is bound by CaM. We show by circular dichroism spectroscopy and thermal melts that mutations on the hydrophobic face of the distal helix disrupt the structure gained upon CaM binding. Additionally, kinetic analysis of CaN activity suggests that these mutations affect CaN's ability to bind substrate, likely a result of the AID being able to bind to the active site even when CaM is bound. Our data demonstrate the presence of this distal helix and suggest it folds onto the remainder of the RD:CaM complex, creating a hairpinlike chain reversal that removes the AID from the active site.


Asunto(s)
Calcineurina/química , Secuencia de Aminoácidos , Sitios de Unión , Calcineurina/genética , Calmodulina/química , Calmodulina/metabolismo , Estabilidad de Enzimas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Temperatura
5.
Proteins ; 81(4): 607-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23180611

RESUMEN

In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity. This despite all six peptides having similar CaM-binding affinities. Our data indicate there is some correlation between the deduced propensities and the thermodynamics of CaM binding. This finding implies that molecular recognition features, such as CaM target sequences, may possess a broad range of propensities to adopt local structure. Given that these peptides bind to CaM with similar affinities, the data suggest that having a higher propensity to adopt α-helical structure does not necessarily result in tighter binding, and that the mechanism of CaM binding is very dependent on the nature of the substrate sequence.


Asunto(s)
Calmodulina/metabolismo , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Datos de Secuencia Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Termodinámica
6.
J Mol Biol ; 415(2): 307-17, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22100452

RESUMEN

The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ∼25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein.


Asunto(s)
Calcineurina/química , Calcineurina/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA