Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
World Neurosurg X ; 23: 100377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698836

RESUMEN

Objective: This study aimed to compare microvascular Doppler sonography (MDS) and laser speckle contrast imaging (LSCI) for assessing vessel patency and aneurysm occlusion during microsurgical clipping of intracranial aneurysms. Methods: MDS and LSCI were used after clip placement during six neurovascular procedures including six patients, and agreement between the two techniques was assessed. LSCI was performed in parallel or right after MDS evaluation. The Doppler response was assessed through listening while flow in the LSCI videos was evaluated by three blinded neurovascular surgeons after the surgery. Statistical analysis determined the agreement between the techniques in assessing flow in 18 regions of interest (ROIs). Results: Agreement between MDS and LSCI in assessing vessel patency was observed in 87 % of the ROIs. LSCI accurately identified flow in 93.3 % of assessable ROIs, with no false positive or negative measurements. Three ROIs were not assessable with LSCI due to motion artifacts or poor image quality. No complications were observed. Conclusions: LSCI demonstrated high agreement with MDS in assessing vessel patency during microsurgical clipping of intracranial aneurysms. It provided continuous, real-time, full-field imaging with high spatial resolution and temporal resolution. While MDS allowed evaluation of deep vascular regions, LSCI complemented it by offering unlimited assessment of surrounding vessels.

2.
Bioengineering (Basel) ; 11(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38391597

RESUMEN

A potential method for tracking neurovascular disease progression over time in preclinical models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature with capillary-level resolution. However, obtaining high-quality, three-dimensional images with traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies. Here, we present a convolutional neural network-based (PSSR Res-U-Net architecture) algorithm for fast upscaling of low-resolution or sparsely sampled images and combine it with a segmentation-less vectorization process for 3D reconstruction and statistical analysis of vascular network structure. In doing so, we also demonstrate that the use of semi-synthetic training data can replace the expensive and arduous process of acquiring low- and high-resolution training pairs without compromising vectorization outcomes, and thus open the possibility of utilizing such approaches for other MPM tasks where collecting training data is challenging. We applied our approach to images with large fields of view from a mouse model and show that our method generalizes across imaging depths, disease states and other differences in neurovasculature. Our pretrained models and lightweight architecture can be used to reduce MPM imaging time by up to fourfold without any changes in underlying hardware, thereby enabling deployability across a range of settings.

3.
Biomed Opt Express ; 15(2): 1004-1020, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404351

RESUMEN

The temporal intensity fluctuations contain important information about the light source and light-medium interaction and are typically characterized by the intensity autocorrelation function, g2(τ). The measurement of g2(τ) is a central topic in many optical sensing applications, ranging from stellar intensity interferometer in astrophysics, to fluorescence correlation spectroscopy in biomedical sciences and blood flow measurement with dynamic light scattering. Currently, g2(τ) at a single point is readily accessible through high-frequency sampling of the intensity signal. However, two-dimensional wide-field imaging of g2(τ) is still limited by the cameras' frame rate. We propose and demonstrate a 2-pulse within-exposure modulation approach to break through the camera frame rate limit and obtain the quasi g2(τ) map in wide field with cameras of only ordinary frame rates.

4.
Acta Neurochir (Wien) ; 166(1): 27, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261093

RESUMEN

Adenosine induced cardiac arrest (AiCA) is one of the methods used to facilitate microsurgical aneurysm clipping by providing more visibility and less pressure in the aneurysmal sac and neighboring vessels. We report the use of laser speckle contrast imaging (LSCI) during AiCA to monitor the changes in pulsation and perfusion on the cortical surface during adenosine induced cardiac arrest for aneurysm clipping surgery. Application of this technology for perfusion monitoring may improve workflow and surgical guidance and provide valuable feedback continuously throughout the procedure. ClinicalTrials.gov identifier: NCT0502840.


Asunto(s)
Aneurisma , Imágenes de Contraste de Punto Láser , Humanos , Perfusión , Adenosina , Paro Cardíaco Inducido
5.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293101

RESUMEN

We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two synchronized excitation sources at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.

6.
Am J Vet Res ; 84(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039627

RESUMEN

OBJECTIVE: To evaluate skin perfusion in cats receiving dexmedetomidine compared to a placebo. ANIMALS: 9 healthy adult research cats. METHODS: A randomized, blinded, placebo-controlled study design was used. Two sites, the dorsal metatarsus (site: limb) and lateral flank (site: flank), were evaluated with laser speckle contrast imaging (LSCI) at baseline and following administration of dexmedetomidine (1, 3, or 5 mcg/kg, IV) or a placebo (0.9% saline, IV). Mean speckle contrast (MSC), a surrogate for perfusion, was obtained from LSCI and compared between treatments. Heart rate, sedation score, and body temperature were recorded. Skin perfusion to the flank and limb, reported as MSC, was assessed via LSCI at baseline and at 5, 10, and 15 minutes posttreatment. RESULTS: There was a significant decrease in heart rate (P < .001) in cats receiving 1, 3, and 5 mcg/kg dexmedetomidine compared to placebo. There was a significant increase in median sedation score at all time points postsedation compared to baseline (P < .018). Changes in MSC for the metatarsus were not significantly different between treatments at any time point (P = .12). For the flank, MSC was significantly higher for cats treated with dexmedetomidine compared to baseline (P ≤ .01). Skin perfusion to the flank decreased as early as 5 minutes posttreatment with dexmedetomidine and persisted for at least 15 minutes, regardless of dexmedetomidine dose. CLINICAL RELEVANCE: Dexmedetomidine decreased skin perfusion in cats, even at low doses. Veterinarians may elect for an alternative sedative medication when decreased skin perfusion is a concern.


Asunto(s)
Dexmedetomidina , Gatos , Animales , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Frecuencia Cardíaca , Perfusión/veterinaria
7.
Neurophotonics ; 10(4): 045006, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37937198

RESUMEN

Significance: Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structures and functions in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using the gating of high repetition rate ultrafast pulse trains to increase the signal level. Aim: We investigate how the signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach: An electro-optic modulator with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier is used to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare the signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results: We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train at the same average power. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging, we find that pulse gating results in a 2.95-fold increase in the SNR and a 1.37-fold increase in the SBR on average when imaging mouse cortical vasculature at depths ranging from 950 to 1050 µm. Conclusions: We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structures through two-photon microscopy.

8.
Neurosurgery ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032222

RESUMEN

BACKGROUND AND OBJECTIVES: Laser speckle contrast imaging (LSCI) has emerged as a promising tool for assessment of vessel flow during neurosurgery. We aimed to investigate the feasibility of visualizing vessel flow in the macrocirculation with a new fully microscope-integrated LSCI system and assess the validity and objectivity of findings compared with fluorescence angiography (FA). METHODS: This is a single-center prospective observational study enrolling adult patients requiring microsurgical treatment for brain vascular pathologies or brain tumors. Three independent raters, blinded toward findings of FA, reviewed regions of interest (ROIs) placed in exposed vessels and target structures. The primary end point was the validity of LSCI for assessment of vessel flow as measured by the agreement with FA. The secondary end point was objectivity, measured as the inter-rater agreement of LSCI findings. RESULTS: During 18 surgical procedures, 23 observations using FA and LSCI were captured simultaneously. Using LSCI, vessel flow was assessable in 62 (86.1%) and not assessable in 10 (13.9%) ROIs. The agreement between LSCI and FA was 86.1%, with an agreement coefficient of 0.85 (95% CI: 0.75-0.94). Disagreement between LSCI and FA was observed in the 10 ROIs that were not assessable. The agreement between ROIs that were assessable using LSCI and FA was 100%. The inter-rater agreement of LSCI findings was 87.9%, with an agreement coefficient of 0.86 (95% CI: 0.79-0.94). CONCLUSION: Fully microscope-integrated LSCI is feasible and has a high potential for clinical utility. Because of its characteristics, LSCI can be viewed as a full-field visual micro-Doppler that can be used as a complementary method to FA for assessing vessel flow during neurosurgery. Despite technical limitations related to the early development phase of the fully microscope-integrated system, we demonstrated reasonable validity and objectivity of findings compared with FA. Further research and refinement of the system may enhance its value in neurosurgical applications.

9.
Nat Commun ; 14(1): 6341, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816732

RESUMEN

Stroke enhances proliferation of neural precursor cells within the subventricular zone (SVZ) and induces ectopic migration of newborn cells towards the site of injury. Here, we characterize the identity of cells arising from the SVZ after stroke and uncover a mechanism through which they facilitate neural repair and functional recovery. With genetic lineage tracing, we show that SVZ-derived cells that migrate towards cortical photothrombotic stroke in mice are predominantly undifferentiated precursors. We find that ablation of neural precursor cells or conditional knockout of VEGF impairs neuronal and vascular reparative responses and worsens recovery. Replacement of VEGF is sufficient to induce neural repair and recovery. We also provide evidence that CXCL12 from peri-infarct vasculature signals to CXCR4-expressing cells arising from the SVZ to direct their ectopic migration. These results support a model in which vasculature surrounding the site of injury attracts cells from the SVZ, and these cells subsequently provide trophic support that drives neural repair and recovery.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Ratones , Animales , Ventrículos Laterales , Células-Madre Neurales/fisiología , Factor A de Crecimiento Endotelial Vascular , Neurogénesis/fisiología , Accidente Cerebrovascular/terapia
10.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546910

RESUMEN

The temporal intensity fluctuations contain important information about the light source and light-medium interaction and are typically characterized by the intensity autocorrelation function, g2(τ). The measurement of g2(τ) is a central topic in many optical sensing applications, ranging from stellar intensity interferometer in astrophysics, to fluorescence correlation spectroscopy in biomedical sciences and blood flow measurement with dynamic light scattering. Currently, g2(τ) at a single point is readily accessible through high-frequency sampling of the intensity signal. However, two-dimensional wide-field measurement of g2(τ) is still limited by camera frame rates. We propose and demonstrate a 2-pulse within-exposure modulation approach to break through the camera frame rate limit and obtain the quasi g2(τ) map in wide field with cameras of only ordinary frame rates.

11.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066310

RESUMEN

Significance: Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structure and function in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using gates of high repetition rate ultrafast pulse trains to increase signal level. Aim: We investigate how signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach: An electro-optic modulator is used with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results: We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging we find pulse gating to result in a 2.95-fold increase in SNR and a 1.37-fold increase in SBR on average when imaging mouse cortical vasculature at depths ranging from 950 µm to 1050 µm. Conclusions: We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structure through two-photon microscopy.

12.
Biomed Opt Express ; 14(2): 771-782, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36874493

RESUMEN

Monitoring blood flow is critical to treatment efficacy in many surgical settings. Laser speckle contrast imaging (LSCI) is a simple, real-time, label-free optical technique for monitoring blood flow that has emerged as a promising technique but lacks the ability to make repeatable quantitative measurements. Multi-exposure speckle imaging (MESI) is an extension of LSCI that requires increased complexity of instrumentation, which has limited its adoption. In this paper, we design and fabricate a compact, fiber-coupled MESI illumination system (FCMESI) that is substantially smaller and less complex than previous systems. Using microfluidics flow phantoms, we demonstrate that the FCMESI system measures flow with an accuracy and repeatability equivalent to traditional free space MESI illumination systems. With an in vivo stroke model, we also demonstrate the ability of FCMESI to monitor cerebral blood flow changes.

13.
J Biomed Opt ; 28(3): 036003, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36915371

RESUMEN

Significance: Microfluidic flow phantom studies are commonly used for characterizing the performance of laser speckle contrast imaging (LSCI) instruments. The selection of the flow control system is critical for the reliable generation of flow during testing. The majority of recent LSCI studies using microfluidics used syringe pumps for flow control. Aim: We quantified the uncertainty in flow generation for a syringe pump and a pressure-regulated flow system. We then assessed the performance of both LSCI and multi-exposure speckle imaging (MESI) using the pressure-regulated flow system across a range of flow speeds. Approach: The syringe pump and pressure-regulated flow systems were evaluated during stepped flow profile experiments in a microfluidic device using an inline flow sensor. The uncertainty associated with each flow system was calculated and used to determine the reliability for instrument testing. The pressure-regulated flow system was then used to characterize the relative performance of LSCI and MESI during stepped flow profile experiments while using the inline flow sensor as reference. Results: The pressure-regulated flow system produced much more stable and reproducible flow outputs compared to the syringe pump. The expanded uncertainty for the syringe pump was 8 to 20 × higher than that of the pressure-regulated flow system across the tested flow speeds. Using the pressure-regulated flow system, MESI outperformed single-exposure LSCI at all flow speeds and closely mirrored the flow sensor measurements, with average errors of 4.6 % ± 2.6 % and 15.7 % ± 4.6 % , respectively. Conclusions: Pressure-regulated flow systems should be used instead of syringe pumps when assessing the performance of flow measurement techniques with microfluidic studies. MESI offers more accurate relative flow measurements than traditional LSCI across a wide range of flow speeds.


Asunto(s)
Diagnóstico por Imagen , Imágenes de Contraste de Punto Láser , Reproducibilidad de los Resultados , Flujometría por Láser-Doppler/métodos , Fantasmas de Imagen , Flujo Sanguíneo Regional
14.
Methods Mol Biol ; 2616: 97-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715931

RESUMEN

Laser speckle contrast imaging (LSCI) is a label-free optical imaging technique that can quantify flow dynamics across an entire image. Multi-exposure speckle imaging (MESI) is an extension of LSCI that allows for reproducible and quantifiable measurements of flow. MESI has the potential to provide quantitative cerebral blood flow information in both preclinical and clinical applications; in fact, MESI can be extended to resolve the flow dynamics in any exposed tissue. A MESI system can be divided into three primary components: (i) the illumination optics, consisting of the optical source and a method of modulating and gating the illumination intensity; (ii) the collection optics, consisting of a high-speed camera that can be triggered and gated to match the pulsed illumination; and finally (iii) post-processing hardware and software to extract the flow information from the recorded raw intensity images. In the following protocol, we offer a guide to design, operate, and test a MESI system.


Asunto(s)
Circulación Cerebrovascular , Hemodinámica , Imagen Óptica/métodos , Rayos Láser
15.
Front Surg ; 10: 1285758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162090

RESUMEN

AVM surgery is challenging due to progressive and often unforeseeable flow changes during its resection which involve both the AVM and the surrounding brain tissue. Hence, accurate monitoring of blood flow is crucial to minimize complications and improve outcomes. The following case report illustrates the usefulness of complimentary non-invasive tools that can provide real time blood flow assessment. We present a case demonstrating the application of laser speckle contrast imaging (LSCI) in evaluating vessel flow dynamics during AVM surgery. A 30-year-old female presented with sudden headaches, nausea, vomiting, and vertigo. Emergency imaging revealed a ruptured cerebellar AVM necessitating surgical intervention. LSCI was integrated into the surgical workflow, providing continuous visualization of relative cerebral blood flow (rCBF) of vessels surrounding the AVM. Before AVM resection, LSCI measurements revealed the arterialized vasculature supplying the AVM nidus; measurements after AVM resection showed significant hemodynamic changes including normal flow in the initially arterialized AVM draining veins and adjacent arterial branches. LSCI also detected blood flow alterations during temporary occlusion, enabling assessment of downstream vascular regions. In conclusion, we provide an example supporting the utility of LSCI for real-time hemodynamic monitoring during AVM resection surgery. LSCI offers non-invasive, continuous, and immediate blood flow information, complementing conventional imaging methods like indocyanine green angiography. Additionally, our findings suggest that LSCI has the potential to provide a non-invasive means of identifying the specific superficial vessel branches or cortical areas that receive blood supply from a particular vessel.

16.
Biomed Opt Express ; 13(4): 1888-1898, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519268

RESUMEN

Here we introduce a fiber amplifier and a diamond Raman laser that output high powers (6.5 W, 1.3 W) at valuable wavelengths (1060 nm, 1250 nm) for two-photon excitation of red-shifted fluorophores. These custom excitation sources are both simple to construct and cost-efficient in comparison to similar custom and commercial alternatives. Furthermore, they operate at a repetition rate (80 MHz) that allows fast image acquisition using resonant scanners. With our system we demonstrate compatibility with fast resonant scanning, the ability to acquire neuronal images, and the capability to image vasculature at deep locations (>1 mm) within the mouse cerebral cortex.

17.
J Biomed Opt ; 27(8)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35362273

RESUMEN

SIGNIFICANCE: Visualizing high-resolution hemodynamics in cerebral tissue over a large field of view (FOV), provides important information in studying disease states affecting the brain. Current state-of-the-art optical blood flow imaging techniques either lack spatial resolution or are too slow to provide high temporal resolution reconstruction of flow map over a large FOV. AIM: We present a high spatial resolution computational optical imaging technique based on principles of laser speckle contrast imaging (LSCI) for reconstructing the blood flow maps in complex tissue over a large FOV provided that the three-dimensional (3D) vascular structure is known or assumed. APPROACH: Our proposed method uses a perturbation Monte Carlo simulation of the high-resolution 3D geometry for both accurately deriving the speckle contrast forward model and calculating the Jacobian matrix used in our reconstruction algorithm to achieve high resolution. Given the convex nature of our highly nonlinear problem, we implemented a mini-batch gradient descent with an adaptive learning rate optimization method to iteratively reconstruct the blood flow map. Specifically, we implemented advanced optimization techniques combined with efficient parallelization and vectorization of the forward and derivative calculations to make reconstruction of the blood flow map feasible with reconstruction times on the order of tens of minutes. RESULTS: We tested our reconstruction algorithm through simulation of both a flow phantom model as well as an anatomically correct murine cerebral tissue and vasculature captured via two-photon microscopy. Additionally, we performed a noise study, examining the robustness of our inverse model in presence of 0.1% and 1% additive noise. In all cases, the blood flow reconstruction error was <2 % for most of the vasculature, except for the peripheral vasculature which suffered from insufficient photon sampling. Descending vasculature and deeper structures showed slightly higher sensitivity to noise compared with vasculature with a horizontal orientation at the more superficial layers. Our results show high-resolution reconstruction of the blood flow map in tissue down to 500 µm and beyond. CONCLUSIONS: We have demonstrated a high-resolution computational imaging technique for visualizing blood flow map in complex tissue over a large FOV. Once a high-resolution structural image is captured, our reconstruction algorithm only requires a few LSCI images captured through a camera to reconstruct the blood flow map computationally at a high resolution. We note that the combination of high temporal and spatial resolution of our reconstruction algorithm makes the solution well-suited for applications involving fast monitoring of flow dynamics over a large FOV, such as in functional neural imaging.


Asunto(s)
Hemodinámica , Imágenes de Contraste de Punto Láser , Algoritmos , Animales , Circulación Cerebrovascular/fisiología , Ratones , Tomografía Computarizada por Rayos X
18.
Biomed Opt Express ; 13(3): 1374-1385, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35414984

RESUMEN

We demonstrate a simple, low-cost two-photon microscope design with both galvo-galvo and resonant-galvo scanning capabilities. We quantify and compare the signal-to-noise ratios and imaging speeds of the galvo-galvo and resonant-galvo scanning modes when used for murine neurovascular imaging. The two scanning modes perform as expected under shot-noise limited detection and are found to achieve comparable signal-to-noise ratios. Resonant-galvo scanning is capable of reaching desired signal-to-noise ratios using less acquisition time when higher excitation power can be used. Given equal excitation power and total pixel dwell time between the two methods, galvo-galvo scanning outperforms resonant-galvo scanning in image quality when detection deviates from being shot-noise limited.

19.
Neurophotonics ; 9(2): 021908, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35265733

RESUMEN

Significance: Laser speckle contrast imaging (LSCI) has emerged as a promising tool for intraoperative cerebral blood flow (CBF) monitoring because it produces real-time full-field blood flow maps noninvasively and label free. Aim: We aim to demonstrate the ability of LSCI to continuously visualize blood flow during neurovascular procedures. Approach: LSCI hardware was attached to the surgical microscope and did not interfere with the normal operation of the microscope. To more easily visualize CBF in real time, LSCI images were registered with the built-in microscope white light camera such that LSCI images were overlaid on the white light images and displayed to the neurosurgeon continuously in real time. Results: LSCI was performed throughout each surgery when the microscope was positioned over the patient, providing the surgeon with real-time visualization of blood flow changes before, during, and after aneurysm clipping or arteriovenous malformation (AVM) resection in humans. LSCI was also compared with indocyanine green angiography (ICGA) to assess CBF during aneurysm clipping and AVM surgery; integration of the LSCI hardware with the microscope enabled simultaneous acquisition of LSCI and ICGA. Conclusions: The results suggest that LSCI can provide continuous and real-time CBF visualization without affecting the surgeon workflow or requiring a contrast agent. The results also demonstrate that LSCI and ICGA provide different, yet complementary information about vessel perfusion.

20.
J Neurosci Methods ; 366: 109434, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863840

RESUMEN

BACKGROUND: Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physiology. The majority of work examining the impact of anesthesia on cerebral blood flow (CBF) has been restricted to before and after measurements with limited spatial resolution. NEW METHOD: We used multi-exposure speckle imaging (MESI), an advanced form of laser speckle contrast imaging (LSCI), to characterize the dynamics of isoflurane anesthesia induction on cerebral vasculature and blood flow in the mouse brain. RESULTS: The large anatomical changes caused by isoflurane are depicted with wide-field imagery and video highlighting the induction of general anesthesia. Within minutes of exposure, both vessel diameter and blood flow increased drastically compared to the awake state and remained elevated for the duration of imaging. An examination of the dynamics of anesthesia induction reveals that blood flow increased faster in arteries than in veins or parenchyma regions. COMPARISON WITH EXISTING METHODS: MESI offers robust hemodynamic measurements across large fields-of-view and high temporal resolutions sufficient for continuous visualization of cerebrovascular events featuring major changes in blood flow. CONCLUSION: The large alterations caused by isoflurane anesthesia to the cortical vasculature and CBF are readily characterized using MESI. These changes are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.


Asunto(s)
Isoflurano , Animales , Circulación Cerebrovascular/fisiología , Hemodinámica , Isoflurano/farmacología , Ratones , Vasodilatación , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...