Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes Care ; 46(11): 1931-1940, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643311

RESUMEN

OBJECTIVE: Nutrition therapy for gestational diabetes mellitus (GDM) has conventionally focused on carbohydrate restriction. In a randomized controlled trial (RCT), we tested the hypothesis that a diet (all meals provided) with liberalized complex carbohydrate (60%) and lower fat (25%) (CHOICE diet) could improve maternal insulin resistance and 24-h glycemia, resulting in reduced newborn adiposity (NB%fat; powered outcome) versus a conventional lower-carbohydrate (40%) and higher-fat (45%) (LC/CONV) diet. RESEARCH DESIGN AND METHODS: After diagnosis (at ∼28-30 weeks' gestation), 59 women with diet-controlled GDM (mean ± SEM; BMI 32 ± 1 kg/m2) were randomized to a provided LC/CONV or CHOICE diet (BMI-matched calories) through delivery. At 30-31 and 36-37 weeks of gestation, a 2-h, 75-g oral glucose tolerance test (OGTT) was performed and a continuous glucose monitor (CGM) was worn for 72 h. Cord blood samples were collected at delivery. NB%fat was measured by air displacement plethysmography (13.4 ± 0.4 days). RESULTS: There were 23 women per group (LC/CONV [214 g/day carbohydrate] and CHOICE [316 g/day carbohydrate]). For LC/CONV and CHOICE, respectively (mean ± SEM), NB%fat (10.1 ± 1 vs. 10.5 ± 1), birth weight (3,303 ± 98 vs. 3,293 ± 81 g), and cord C-peptide levels were not different. Weight gain, physical activity, and gestational age at delivery were similar. At 36-37 weeks of gestation, CGM fasting (86 ± 3 vs. 90 ± 3 mg/dL), 1-h postprandial (119 ± 3 vs. 117 ± 3 mg/dL), 2-h postprandial (106 ± 3 vs. 108 ± 3 mg/dL), percent time in range (%TIR; 92 ± 1 vs. 91 ± 1), and 24-h glucose area under the curve values were similar between diets. The %time >120 mg/dL was statistically higher (8%) in CHOICE, as was the nocturnal glucose AUC; however, nocturnal %TIR (63-100 mg/dL) was not different. There were no between-group differences in OGTT glucose and insulin levels at 36-37 weeks of gestation. CONCLUSIONS: A ∼100 g/day difference in carbohydrate intake did not result in between-group differences in NB%fat, cord C-peptide level, maternal 24-h glycemia, %TIR, or insulin resistance indices in diet-controlled GDM.


Asunto(s)
Diabetes Gestacional , Resistencia a la Insulina , Embarazo , Femenino , Recién Nacido , Humanos , Adiposidad , Péptido C , Distribución Aleatoria , Glucemia , Obesidad , Glucosa , Dieta con Restricción de Grasas
2.
J Mammary Gland Biol Neoplasia ; 25(4): 367-387, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33216249

RESUMEN

Cells in human milk are an untapped source, as potential "liquid breast biopsies", of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures. We comprehensively characterized 3740 cells from milk samples from two mothers at two weeks postpartum. Most cells (>90%) were luminal MECs (luMECs) expressing lactalbumin alpha and casein beta and positive for keratin 8 and keratin 18. Few cells were keratin 14+ basal MECs and a small immune cell population was present (<10%). Analysis of differential gene expression among clusters identified six potentially distinct luMEC subpopulation signatures, suggesting the potential for subtle functional differences among luMECs, and included one cluster that was positive for both progenitor markers and mature milk transcripts. No expression of pluripotency markers POU class 5 homeobox 1 (POU5F1, encoding OCT4) SRY-box transcription factor 2 (SOX2) or nanog homeobox (NANOG), was observed. These observations were supported by flow cytometric analysis of MECs from mature milk samples from three women with diet-controlled GDM (2-8 mo postpartum), indicating a negligible basal/stem cell population (epithelial cell adhesion molecule (EPCAM)-/integrin subunit alpha 6 (CD49f)+, 0.07%) and a small progenitor population (EPCAM+/CD49f+, 1.1%). We provide a computational framework for others and future studies, as well as report the first milk-derived cells to be analyzed by scRNA-seq. We discuss the clinical potential and current limitations of using milk-derived cells as material for characterizing human mammary physiology.


Asunto(s)
Biología Computacional/métodos , Diabetes Gestacional/metabolismo , Lactancia/fisiología , Glándulas Mamarias Humanas/metabolismo , Leche Humana/citología , Adulto , Diabetes Gestacional/dietoterapia , Células Epiteliales/metabolismo , Femenino , Citometría de Flujo , Humanos , Glándulas Mamarias Humanas/citología , Periodo Posparto/metabolismo , Embarazo , RNA-Seq/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de la Célula Individual , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...