Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
FASEB Bioadv ; 6(2): 41-52, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344411

RESUMEN

The intestinal epithelium is a dynamic barrier that allows the selective exchange of ions, hormones, proteins, and nutrients. To accomplish this, the intestinal epithelium adopts a highly columnar morphology which is partially lost in submerged culturing systems. To achieve this, small intestinal tissue samples were utilized to obtain human intestinal crypts to form enteroids. The Transwell system was subsequently employed to form a monolayer of cells that was cultured in either the submerged condition or the air-liquid Interface (ALI) condition. We found that the human intestinal monolayer under the ALI condition exhibited morphology more similar to the normal intestinal epithelium. F-actin localization and brush border formation were observed apically, and the integrity of the tight junctions was preserved in the ALI condition. Fewer apoptotic cells were observed in the ALI conditions as compared to the submerged conditions. The monolayer of cells expressed a higher level of secretory cell lineage genes in the ALI condition. The ALI condition positively contributes toward a more differentiated phenotype of epithelial cells. It serves as an amplifier that enhances the existing differentiation cue. The ALI system provides a more differentiated platform to study intestinal function compared to submerged conditions.

2.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873341

RESUMEN

Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.

3.
Nat Biomed Eng ; 7(11): 1419-1436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749310

RESUMEN

Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.


Asunto(s)
Reacción a Cuerpo Extraño , Mecanotransducción Celular , Ratones , Humanos , Animales , Prótesis e Implantes , Células Mieloides/patología , Transducción de Señal
4.
Res Sq ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205380

RESUMEN

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.

5.
Pediatr Surg Int ; 39(1): 172, 2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37031428

RESUMEN

PURPOSE: Short bowel syndrome (SBS) is a devastating disease. We have proposed spring-mediated distraction enterogenesis for intestinal lengthening. Colonic lengthening is a potential treatment option for SBS to enhance fluid absorption capacity. We hypothesized that intraluminal spring-mediated colonic lengthening is associated with stem cell proliferation. METHODS: C57BL/6 mice underwent placement of a gelatin-encapsulated compressed or uncompressed nitinol spring in a cecal segment. Animals were given clear liquid diet until postoperative day (POD) 7, followed by regular diet until POD 14. Cecal lengths were measured at euthanasia, and tissue was formalin fixed for histological processing. For Lgr5-GFP mice, immunohistochemistry against GFP was performed to localize Lgr5+ cells within crypts. RESULTS: Significant cecal lengthening with compressed springs and shortening with uncompressed springs were observed on POD 7 and 14. Mucosa of the compressed spring group was significantly thicker on POD 14. The density of Lgr5+ cells within the crypts in the compressed spring groups was higher than that in the uncompressed spring groups on both POD 7 and 14. CONCLUSION: Expandable springs can be used to lengthen the colon in the mouse model. Colonic lengthening was associated with gradual mucosal thickening and correlated with an increased density of stem cells within the crypts.


Asunto(s)
Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Ratones , Animales , Expansión de Tejido , Yeyuno/cirugía , Ratones Endogámicos C57BL , Colon/cirugía , Síndrome del Intestino Corto/cirugía , Células Madre
6.
J Pediatr Surg ; 58(7): 1258-1262, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36894441

RESUMEN

BACKGROUND: It is well known that small bowel length is a dominant prognostic indicator in patients with short bowel syndrome (SBS). The relative importance of jejunum, ileum, and colon is less well defined in children with SBS. Here we review the outcome of children with SBS with respect to the type of remnant intestine. METHODS: A retrospective review of 51 children with SBS was conducted at a single institution. The duration of parenteral nutrition use was the main outcome variable. The length of the remaining intestine as well as the type of intestine were recorded for each patient. Kaplan-Meier analyses were conducted to compare the subgroups. RESULTS: Children with greater than 10% expected small bowel length or more than 30 cm of small bowel achieved enteral autonomy faster than those with less. The presence of ileocecal valve enhanced the ability to wean from parenteral nutrition. The presence of ileum significantly enhanced the ability to wean from parenteral nutrition. Patients with the entire colon also achieved enteral autonomy sooner than those with partial colon. CONCLUSIONS: The preservation of ileum and colon is important in patients with SBS. Approaches to preserve or lengthen ileum and colon may be beneficial for these patients. LEVEL OF EVIDENCE: IV.


Asunto(s)
Síndrome del Intestino Corto , Humanos , Niño , Síndrome del Intestino Corto/terapia , Íleon , Intestino Delgado , Nutrición Parenteral , Colon
7.
Adv Mater ; 35(15): e2207255, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36779454

RESUMEN

The intestinal muscle layers execute various gut wall movements to achieve controlled propulsion and mixing of intestinal content. Engineering intestinal muscle layers with complex contractile function is critical for developing bioartificial intestinal tissue to treat patients with short bowel syndrome. Here, the first demonstration of a living intestinal muscle patch capable of generating three distinct motility patterns and displaying multiple digesta manipulations is reported. Assessment of contractility, cellular morphology, and transcriptome profile reveals that successful generation of the contracting muscle patch relies on both biological factors in a serum-free medium and environmental cues from an elastic electrospun gelatin scaffold. By comparing gene-expression patterns among samples, it is shown that biological factors from the medium strongly affect ion-transport activities, while the scaffold unexpectedly regulates cell-cell communication. Analysis of ligandreceptor interactome identifies scaffold-driven changes in intercellular communication, and 78% of the upregulated ligand-receptor interactions are involved in the development and function of enteric neurons. The discoveries highlight the importance of combining biomolecular and biomaterial approaches for tissue engineering. The living intestinal muscle patch represents a pivotal advancement for building functional replacement intestinal tissue. It offers a more physiological model for studying GI motility and for preclinical drug discovery.


Asunto(s)
Contenido Digestivo , Músculo Liso , Humanos , Músculo Liso/fisiología , Intestinos , Ingeniería de Tejidos , Contracción Muscular , Factores Biológicos
8.
J Pediatr Surg ; 58(1): 89-93, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280466

RESUMEN

PURPOSE: The purpose of the study is to examine the long-term safety of an endoluminal bowel lengthening device prior to its use in the first human trial. In addition, device performance and natural passage will be evaluated. METHODS: Endoluminal lengthening springs were surgically placed into the jejunum of Yucatan minipigs using the Eclipse XL1 device. A matching internal control segment of jejunum was marked at the time of operation. Weekly weights and fluoroscopic studies were obtained to evaluate spring deployment and position until devices passed. Animals were euthanized at 28, 60, 90, and 180 days. At necropsy, length measurements were recorded, and histopathologic analysis was performed. RESULTS: There were no bowel obstructions or overt perforations attributable to the device. All surviving animals gained weight and were clinically thriving. All devices passed out of the rectum by 180 days. Bowel lengthening was seen in all experimental segments, and minimal fibrosis was observed by 180 days. CONCLUSION: Jejunal lengthening persisted after device had passed through the intestinal tract after 180 days. Early histopathologic changes of the jejunum during distraction enterogenesis normalized over time.


Asunto(s)
Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Animales , Yeyuno/cirugía , Recto/cirugía , Síndrome del Intestino Corto/cirugía , Porcinos Enanos , Dispositivos de Expansión Tisular/efectos adversos
9.
Pediatr Surg Int ; 39(1): 19, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36449179

RESUMEN

PURPOSE: Spring-mediated distraction enterogenesis has proven to be successful for intestinal lengthening. We aimed to evaluate the effect of spring diameter mismatch on intestinal adaptation. METHODS: Juvenile mini-Yucatan pigs underwent placement of compressed nitinol springs with diameter of 10, 11, or 12 mm into the ileal lumen. Pigs were euthanized on postoperative day 7. The lengths, histology, total area of blood vessels, and enteric ganglia were evaluated. RESULTS: All spring groups exhibited significant ileal lengthening. Across the different diameters, spring-expanded segments were similar in terms of ileal lengthening, crypt height, muscular thickness, blood vessels, and enteric ganglia area. CONCLUSION: Spring-mediated distraction enterogenesis is successful in the porcine ileum. A smaller diameter spring is as effective as a larger diameter spring in lengthening the ileum. Springs of varying diameters result in comparable structural changes in the ileum.


Asunto(s)
Íleon , Animales , Porcinos , Humanos , Íleon/cirugía , Periodo Posoperatorio
10.
Front Pediatr ; 10: 893059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081629

RESUMEN

Necrotizing enterocolitis (NEC) is a leading cause of premature newborn morbidity and mortality. The clinical features of NEC consistently include prematurity, gut dysbiosis and enteral inflammation, yet the pathogenesis remains obscure. Herein we combine metagenomics and targeted metabolomics, with functional in vivo and in vitro assessment, to define a novel molecular mechanism of NEC. One thousand six hundred and forty seven publicly available metagenomics datasets were analyzed (NEC = 245; healthy = 1,402) using artificial intelligence methodologies. Targeted metabolomic profiling was used to quantify the concentration of specified fecal metabolites at NEC onset (n = 8), during recovery (n = 6), and in age matched controls (n = 10). Toxicity assays of discovered metabolites were performed in vivo in mice and in vitro using human intestinal epithelial cells. Metagenomic and targeted metabolomic analyses revealed significant differences in pyruvate fermentation pathways and associated intermediates. Notably, the short chain fatty acid formate was elevated in the stool of NEC patients at disease onset (P = 0.005) dissipated during recovery (P = 0.02) and positively correlated with degree of intestinal injury (r 2 = 0.86). In vitro, formate caused enterocyte cytotoxicity in human cells through necroptosis (P < 0.01). In vivo, luminal formate caused significant dose and development dependent NEC-like injury in newborn mice. Enterobacter cloacae and Klebsiella pneumoniae were the most discriminatory taxa related to NEC dysbiosis and increased formate production. Together, these data suggest a novel biochemical mechanism of NEC through the microbial production of formate. Clinical efforts to prevent NEC should focus on reducing the functional consequences of newborn gut dysbiosis associated metabolic pathways.

11.
Biomolecules ; 12(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139127

RESUMEN

Inflammatory bowel diseases (IBD) are chronic, recurring gastrointestinal diseases that severely impair health and quality of life. Although therapeutic options have significantly expanded in recent years, there is no effective therapy for a complete and permanent cure for IBD. Well tolerated dietary interventions to improve gastrointestinal health in IBD would be a welcome advance especially with anticipated favorable tolerability and affordability. Soluble protein hydrolysate (SPH) is produced by the enzymatic hydrolysis of commercial food industry salmon offcuts (consisting of the head, backbone and skin) and contains a multitude of bioactive peptides including those with anti-oxidant properties. This study aimed to investigate whether SPH ameliorates gastrointestinal injury in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Mice were randomly assigned to four groups: Control (no colitis), Colitis, Colitis/CP (with control peptide treatment), and Colitis/SPH (with SPH treatment). Colitis was induced by cutaneous sensitization with 1% TNBS on day -8 followed by 2.5% TNBS enema challenge on day 0. Control peptides and SPH were provided to the mice in the Colitis/CP or Colitis/SPH group respectively by drinking water at the final concentration of 2% w/v daily from day -10 to day 4. Then, the colon was harvested on day 4 and examined macro- and microscopically. Relevant measures included disease activity index (DAI), colon histology injury, immune cells infiltration, pro- and anti-inflammatory cytokines and anti-oxidative gene expression. It was found that SPH treatment decreased the DAI score and colon tissue injury when compared to the colitis-only and CP groups. The protective mechanisms of SPH were associated with reduced infiltration of CD4+ T, CD8+ T and B220+ B lymphocytes but not macrophages, downregulated pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6), and upregulated anti-inflammatory cytokines (transforming growth factor-ß1 and interleukin-10) in the colon tissue. Moreover, the upregulation of anti-oxidative genes, including ferritin heavy chain 1, heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and superoxide dismutase 1, in the colons of colitis/SPH group was observed compared with the control peptide treatment group. In conclusion, the protective mechanism of SPH is associated with anti-inflammatory and anti-oxidative effects as demonstrated herein in an established mice model of colitis. Clinical studies with SPH as a potential functional food for the prevention or as an adjuvant therapy in IBD may add an effective and targeted diet-based approach to IBD management in the future.


Asunto(s)
Colitis , Agua Potable , Enfermedades Inflamatorias del Intestino , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Apoferritinas , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Citocinas/metabolismo , Agua Potable/efectos adversos , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ratones , NAD/metabolismo , Hidrolisados de Proteína/metabolismo , Calidad de Vida , Quinonas/uso terapéutico , Superóxido Dismutasa-1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Trinitrobencenos , Ácido Trinitrobencenosulfónico/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo
12.
PLoS One ; 17(9): e0274612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107915

RESUMEN

BACKGROUND: Short bowel syndrome and its resultant nutritional deficiencies are the most common cause of intestinal failure. Significant intestinal lengthening using intraluminal springs is feasible in porcine models using an external plication technique. We hypothesize that an internal plication technique will yield significant intestinal lengthening, which may lead to future endoscopic spring placement. METHODS: Uncompressed springs measuring 7.5 cm with a diameter of 1.0 cm were compressed to 2.0 cm. A gelatin-encapsulated compressed nitinol spring was inserted into the jejunal lumen of juvenile pigs and held in place with endoluminal sutures just proximal and distal to the spring-containing segment. A control segment distal to the spring was marked. Pigs were euthanized on postoperative day 7. Spring and control segments were collected for analyses. RESULTS: There was an average lengthening by 72% of the spring segment compared to the control segment. Two out of 7 springs stayed within both sets of plications and doubled in length. Histology showed normal mucosal integrity of the spring segment and plicated areas with similar muscular thickness but increased crypt depth and villus length compared to the control segment. CONCLUSION: Internal plication resulted in significant bowel lengthening. Five springs had slipped through proximal, distal or both sets of plications, resulting in less lengthening than those that remained fixed. A more consistent methodology for endoluminal suturing is needed to produce more lengthening.


Asunto(s)
Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Animales , Gelatina , Intestinos/cirugía , Síndrome del Intestino Corto/cirugía , Porcinos , Expansión de Tejido/métodos
13.
J Surg Res ; 280: 371-378, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36037614

RESUMEN

INTRODUCTION: Short bowel syndrome is a devastating gastrointestinal disorder in which decreased bowel length results in inadequate absorption causing nutritional deficiencies. Current treatment options are accompanied by significant morbidity. We have proposed spring-mediated distraction enterogenesis as a method to lengthen bowel with success seen in porcine jejunum. We hypothesize that spring-mediated distraction enterogenesis can be demonstrated in porcine ileum with preservation of ileal structure and function. MATERIALS AND METHODS: Laparotomy was performed on juvenile female mini-Yucatan pigs and a gelatin-encapsulated compressed nitinol spring was inserted into the ileal lumen and affixed proximally and distally. A control segment distal to the spring segment was marked with sutures. Postoperatively, pigs were placed on a liquid diet and euthanized on postoperative day 7. Spring and control segments were measured and processed for immunohistochemistry to evaluate for the presence of vitamin B12-intrinsic factor cotransporter, chromogranin A-producing cells, and 5-HT producing cells. RESULTS: All seven pigs survived to postoperative day 7 with no adverse effects. On average, pigs gained 84.3 ± 66.4 g/d. Spring segments lengthened 1.5 ± 0.7 cm with a relative lengthening by 128% ± 56%, which was statistically significant when compared to control (P < 0.01). The average density of chromogranin-A cells in control compared to spring segments was not significantly changed (2.9 ± 1.1 cells/mm versus 3.2 ± 1.2 cells/mm, P = 0.17). Both vitamin B12-intrinsic factor cotransporter and 5-HT producing cells were present in both control and lengthened ileum. CONCLUSIONS: Intraluminal nitinol springs significantly lengthened porcine ileum. The increase in density of enteroendocrine cells may indicate enhanced endocrine function of the lengthened ileum.


Asunto(s)
Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Femenino , Porcinos , Animales , Expansión de Tejido/métodos , Yeyuno/cirugía , Gelatina , Cromogranina A , Factor Intrinseco , Cromograninas , Serotonina , Síndrome del Intestino Corto/cirugía , Porcinos Enanos , Íleon/cirugía , Vitamina B 12
14.
Children (Basel) ; 9(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884008

RESUMEN

Short bowel syndrome (SBS) is a devastating disorder with both short- and long-term implications for patients. Unfortunately, the prevalence of SBS has doubled over the past 40 years. Broadly speaking, the etiology of SBS can be categorized as congenital or secondary, the latter typically due to extensive small bowel resection following diseases of the small intestine, e.g., necrotizing enterocolitis, Hirschsprung's disease or intestinal atresia. As of yet, no cure exists, thus, conservative treatment, primarily parenteral nutrition (PN), is the first-line therapy. In some cases, weaning from PN is not possible and operative therapy is required. The invention of the longitudinal intestinal lengthening and tailoring (LILT or Bianchi) procedure in 1980 was a major step forward in patient care and spawned further techniques that continue to improve lives for patients with severe SBS (e.g., double barrel enteroplasty, serial transverse enteroplasty, etc.). With this review, we aim to provide an overview of the clinical implications of SBS, common conservative therapies and the development of operative techniques over the past six decades. We also provide a short outlook on the future of operative techniques, specifically with respect to regenerative medicine.

15.
Nature ; 606(7912): 94-101, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650358

RESUMEN

Neurotransmitters play essential roles in regulating neural circuit dynamics both in the central nervous system as well as at the peripheral, including the gastrointestinal tract1-3. Their real-time monitoring will offer critical information for understanding neural function and diagnosing disease1-3. However, bioelectronic tools to monitor the dynamics of neurotransmitters in vivo, especially in the enteric nervous systems, are underdeveloped. This is mainly owing to the limited availability of biosensing tools that are capable of examining soft, complex and actively moving organs. Here we introduce a tissue-mimicking, stretchable, neurochemical biological interface termed NeuroString, which is prepared by laser patterning of a metal-complexed polyimide into an interconnected graphene/nanoparticle network embedded in an elastomer. NeuroString sensors allow chronic in vivo real-time, multichannel and multiplexed monoamine sensing in the brain of behaving mouse, as well as measuring serotonin dynamics in the gut without undesired stimulations and perturbing peristaltic movements. The described elastic and conformable biosensing interface has broad potential for studying the impact of neurotransmitters on gut microbes, brain-gut communication and may ultimately be extended to biomolecular sensing in other soft organs across the body.


Asunto(s)
Encéfalo , Sistema Nervioso Entérico , Tracto Gastrointestinal , Neurotransmisores , Animales , Técnicas Biosensibles , Encéfalo/metabolismo , Eje Cerebro-Intestino , Elastómeros , Sistema Nervioso Entérico/metabolismo , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Grafito , Rayos Láser , Ratones , Nanopartículas , Neurotransmisores/análisis , Serotonina/análisis
16.
J Surg Res ; 279: 119-126, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35759929

RESUMEN

INTRODUCTION: Currently, there is no accurate noninvasive measurement system to diagnose gastrointestinal (GI) motility disorders. Wireless skin patches have been introduced to provide an accurate noninvasive measurement of GI myoelectric activity which is essential for developing neuro-stimulation devices to treat GI motility disorders. The aim of this study is to compare the external and internal electrical signal measurements in ambulatory pigs. METHODS: Yucatan pigs underwent placement of internal electrodes on the stomach, small intestine, and colon. Wires were brought through the abdominal wall. Signals were collected by a wireless receptor. Four external patches were placed on the abdominal skin to record the signals simultaneously. Pigs were kept for 6 d while the sensors were continuously recording the data from both systems. RESULTS: Internal sensors detected rich signals from each organ. The stomach had a dominant frequency that ranged from 4 to 4.5 cpm, with occasional higher frequencies at 2, 3 and 4 times that. Small intestine signals had their primary energy in the 12-15 cpm range. Colon signals primarily displayed a dominant broad peak in the 4-6 cpm region. External skin patches detected a substantial fraction of the activities measured by the internal electrodes. A clear congruence in the frequency spectrum was observed between the internal and external readings. CONCLUSIONS: Internally measured myoelectrical signals confirmed different patterns of rhythmic activity of the stomach, small intestine, and colon. Skin patches provided GI myoelectric measurement with a range of frequencies that could be useful in the diagnosis and treatment of motility disorders.


Asunto(s)
Tracto Gastrointestinal , Estómago , Animales , Colon/fisiología , Electrodos , Motilidad Gastrointestinal/fisiología , Intestino Delgado/fisiología , Porcinos
17.
J Pediatr Surg ; 57(12): 810-818, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35760639

RESUMEN

INTRODUCTION: Preservation of native esophagus is a tenet of esophageal atresia (EA) repair. However, techniques for delayed primary anastomosis are severely limited for surgically and medically complex patients at high-risk for operative repair. We report our initial experience with the novel application of the Connect-EA, an esophageal magnetic compression anastomosis device, for salvage of primary repair in 2 high-risk complex EA patients. Compassionate use was approved by the FDA and treating institutions. OPERATIVE TECHNIQUE: Two approaches using the Connect-EA are described - a totally endoscopic approach and a novel hybrid operative approach. To our knowledge, this is the first successful use of a hybrid operative approach with an esophageal magnetic compression device. OUTCOMES: Salvage of delayed primary anastomosis was successful in both patients. The totally endoscopic approach significantly reduced operative time and avoided repeat high-risk operation. The hybrid operative approach salvaged delayed primary anastomosis and avoided cervical esophagostomy. CONCLUSION: The Connect-EA is a novel intervention to achieve delayed primary esophageal repair in complex EA patients with high-risk tissue characteristics and multi-system comorbidities that limit operative repair. We propose a clinical algorithm for use of the totally endoscopic approach and hybrid operative approach for use of the Connect-EA in high-risk complex EA patients.


Asunto(s)
Atresia Esofágica , Esofagoplastia , Fístula Traqueoesofágica , Humanos , Atresia Esofágica/cirugía , Resultado del Tratamiento , Esofagoplastia/métodos , Anastomosis Quirúrgica/métodos , Fístula Traqueoesofágica/cirugía
18.
J Pediatr Surg ; 57(7): 1377-1381, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34740442

RESUMEN

BACKGROUND/PURPOSE: Distraction enterogenesis with intraluminal spring technology has been successfully used to lengthen segments of murine small intestine. We hypothesized that biocompatible springs could also be used to lengthen murine large intestine. METHODS: Age and weight matched C57BL/6 mice underwent surgical insertion of nitinol spring-loaded capsules into the cecum. Segment lengths were measured at initial spring placement and at euthanasia after 7 and 14 days. Histologic adaptations were evaluated at scarification. RESULTS: Cecal segments loaded with compressed springs lengthened an average of 150%, which was significantly longer than control segments loaded with either empty capsules or uncompressed springs. Muscularis layers tended to be thicker in the compressed spring groups compared to control groups. CONCLUSIONS: Insertion of a compressed nitinol spring into the cecum results in significant colonic lengthening in a mouse model. The ability to increase cecum length serves as proof of concept that distraction enterogenesis technology may be feasibly applied to large intestinal models. The use of distraction enterogenesis technology shows promise for application to clinical models in the treatment of pediatric intestinal disease.


Asunto(s)
Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Animales , Cápsulas , Colon/cirugía , Humanos , Yeyuno/cirugía , Ratones , Ratones Endogámicos C57BL , Síndrome del Intestino Corto/cirugía , Expansión de Tejido/métodos
19.
Ann Surg ; 274(4): e370-e380, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506326

RESUMEN

OBJECTIVE: The aim of this study was to determine which initial surgical treatment results in the lowest rate of death or neurodevelopmental impairment (NDI) in premature infants with necrotizing enterocolitis (NEC) or isolated intestinal perforation (IP). SUMMARY BACKGROUND DATA: The impact of initial laparotomy versus peritoneal drainage for NEC or IP on the rate of death or NDI in extremely low birth weight infants is unknown. METHODS: We conducted the largest feasible randomized trial in 20 US centers, comparing initial laparotomy versus peritoneal drainage. The primary outcome was a composite of death or NDI at 18 to 22 months corrected age, analyzed using prespecified frequentist and Bayesian approaches. RESULTS: Of 992 eligible infants, 310 were randomized and 96% had primary outcome assessed. Death or NDI occurred in 69% of infants in the laparotomy group versus 70% with drainage [adjusted relative risk (aRR) 1.0; 95% confidence interval (CI): 0.87-1.14]. A preplanned analysis identified an interaction between preoperative diagnosis and treatment group (P = 0.03). With a preoperative diagnosis of NEC, death or NDI occurred in 69% after laparotomy versus 85% with drainage (aRR 0.81; 95% CI: 0.64-1.04). The Bayesian posterior probability that laparotomy was beneficial (risk difference <0) for a preoperative diagnosis of NEC was 97%. For preoperative diagnosis of IP, death or NDI occurred in 69% after laparotomy versus 63% with drainage (aRR, 1.11; 95% CI: 0.95-1.31); Bayesian probability of benefit with laparotomy = 18%. CONCLUSIONS: There was no overall difference in death or NDI rates at 18 to 22 months corrected age between initial laparotomy versus drainage. However, the preoperative diagnosis of NEC or IP modified the impact of initial treatment.


Asunto(s)
Drenaje , Enterocolitis Necrotizante/cirugía , Enfermedades del Prematuro/cirugía , Perforación Intestinal/cirugía , Laparotomía , Trastornos del Neurodesarrollo/epidemiología , Enterocolitis Necrotizante/mortalidad , Enterocolitis Necrotizante/psicología , Estudios de Factibilidad , Femenino , Humanos , Recien Nacido con Peso al Nacer Extremadamente Bajo , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/mortalidad , Enfermedades del Prematuro/psicología , Perforación Intestinal/mortalidad , Perforación Intestinal/psicología , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Tasa de Supervivencia , Resultado del Tratamiento
20.
J Pediatr Surg ; 56(2): 346-351, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32709529

RESUMEN

BACKGROUND/PURPOSE: Intraluminal springs have recently been shown to lengthen segments of intestine in a process known as distraction enterogenesis. We hypothesized that biocompatible springs could be used to lengthen defunctionalized murine small intestine and would lead to identifiable intestinal adaptations at the molecular level. METHODS: Age and weight matched C57BL/6 mice underwent surgical insertion of nitinol spring-loaded capsules into a Roux limb of jejunum. Segment lengths were measured at initial spring placement and at euthanasia after 14 and 21 days. Histology and gene expression of the Roux limb were evaluated at scarification and compared to untreated control segments. RESULTS: Intestinal segments loaded with compressed springs lengthened an average of 240%, which was significantly longer than control segments loaded with either empty capsules or uncompressed springs. Muscularis thickening was greater in spring-treated mice compared to controls without springs. Crypt depth and Lgr5+ expression was greater in mice that received compressed spring treatments when compared to control groups. CONCLUSIONS: Insertion of a compressed nitinol spring into a Roux limb results in significant intestinal lengthening, smooth muscle thickening, and Lgr5+ expression in a mouse model. The ability to increase small bowel length in a defunctionalized murine model may be used to understand the mechanism of distraction enterogenesis.


Asunto(s)
Intestinos/cirugía , Síndrome del Intestino Corto , Dispositivos de Expansión Tisular , Animales , Yeyuno/cirugía , Ratones , Ratones Endogámicos C57BL , Síndrome del Intestino Corto/cirugía , Expansión de Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...