Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
medRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38196587

RESUMEN

Brugada Syndrome (BrS) is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in the cardiac sodium channel gene, SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging and ~79% of SCN5A missense variants in ClinVar are currently classified as Variants of Uncertain Significance (VUS). An in vitro SCN5A-BrS automated patch clamp assay was generated for high-throughput functional studies of NaV1.5. The assay was independently studied at two separate research sites - Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute - revealing strong correlations, including peak INa density (R2=0.86). The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. The assay accurately distinguished benign controls (24/25) from pathogenic controls (23/24). Odds of Pathogenicity values derived from the experimental results yielded 0.042 for normal function (BS3 criterion) and 24.0 for abnormal function (PS3 criterion), resulting in up to strong evidence for both ACMG criteria. The calibrated assay was then used to study SCN5A VUS observed in four families with BrS and other arrhythmia phenotypes associated with SCN5A loss-of-function. The assay revealed loss-of-function for three of four variants, enabling reclassification to likely pathogenic. This validated APC assay provides clinical-grade functional evidence for the reclassification of current VUS and will aid future SCN5A-BrS variant classification.

6.
Circ Genom Precis Med ; 14(6): e003419, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802252

RESUMEN

BACKGROUND: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. METHODS: Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used co-immunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. RESULTS: Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 (alpha-actinin 1) and GJA1 (gap junction protein alpha 1), 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. CONCLUSIONS: Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.


Asunto(s)
Actinina , Cardiomiopatías , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Sarcómeros/genética
7.
Genet Med ; 23(12): 2415-2425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400813

RESUMEN

PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.


Asunto(s)
Cardiomiopatías , Muerte Súbita Cardíaca , Adolescente , Alelos , Cardiomiopatías/genética , Preescolar , Muerte Súbita Cardíaca/etiología , Humanos , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Proteínas Mitocondriales/genética , Mutación
10.
Genet Med ; 20(3): 369-373, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29240077

RESUMEN

PurposeTo describe the frequency and nature of differences in variant classifications between clinicians and genetic testing laboratories.MethodsRetrospective review of variants identified through genetic testing ordered in routine clinical care by clinicians in the Stanford Center for Inherited Cardiovascular Disease. We compared classifications made by clinicians, the testing laboratory, and other laboratories in ClinVar.ResultsOf 688 laboratory classifications, 124 (18%) differed from the clinicians' classifications. Most differences in classification would probably affect clinical care of the patient and/or family (83%, 103/124). The frequency of discordant classifications differed depending on the testing laboratory (P < 0.0001) and the testing laboratory's classification (P < 0.00001). For the majority (82/124, 66%) of discordant classifications, clinicians were more conservative (less likely to classify a variant pathogenic or likely pathogenic). The clinicians' classification was discordant with one or more submitter in ClinVar in 49.1% (28/57) of cases, while the testing laboratory's classification was discordant with a ClinVar submitter in 82.5% of cases (47/57, P = 0.0002).ConclusionThe clinical team disagreed with the laboratory's classification at a rate similar to that of reported disagreements between laboratories. Most of this discordance was clinically significant, with clinicians tending to be more conservative than laboratories in their classifications.


Asunto(s)
Variación Genética , Genética Médica/normas , Laboratorios , Anotación de Secuencia Molecular/normas , Médicos , Alelos , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/normas , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genética Médica/métodos , Humanos
11.
Proc Natl Acad Sci U S A ; 113(41): 11555-11560, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681629

RESUMEN

Somatic mosaicism, the occurrence and propagation of genetic variation in cell lineages after fertilization, is increasingly recognized to play a causal role in a variety of human diseases. We investigated the case of life-threatening arrhythmia in a 10-day-old infant with long QT syndrome (LQTS). Rapid genome sequencing suggested a variant in the sodium channel NaV1.5 encoded by SCN5A, NM_000335:c.5284G > T predicting p.(V1762L), but read depth was insufficient to be diagnostic. Exome sequencing of the trio confirmed read ratios inconsistent with Mendelian inheritance only in the proband. Genotyping of single circulating leukocytes demonstrated the mutation in the genomes of 8% of patient cells, and RNA sequencing of cardiac tissue from the infant confirmed the expression of the mutant allele at mosaic ratios. Heterologous expression of the mutant channel revealed significantly delayed sodium current with a dominant negative effect. To investigate the mechanism by which mosaicism might cause arrhythmia, we built a finite element simulation model incorporating Purkinje fiber activation. This model confirmed the pathogenic consequences of cardiac cellular mosaicism and, under the presenting conditions of this case, recapitulated 2:1 AV block and arrhythmia. To investigate the extent to which mosaicism might explain undiagnosed arrhythmia, we studied 7,500 affected probands undergoing commercial gene-panel testing. Four individuals with pathogenic variants arising from early somatic mutation events were found. Here we establish cardiac mosaicism as a causal mechanism for LQTS and present methods by which the general phenomenon, likely to be relevant for all genetic diseases, can be detected through single-cell analysis and next-generation sequencing.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndrome de QT Prolongado/genética , Mosaicismo , Potenciales de Acción , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Secuencia de Bases , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Simulación por Computador , Difusión , Electrocardiografía , Frecuencia de los Genes/genética , Genes Dominantes , Sitios Genéticos , Técnicas de Genotipaje , Sistema de Conducción Cardíaco/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/diagnóstico por imagen , Síndrome de QT Prolongado/fisiopatología , Modelos Biológicos , Mutación/genética , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Análisis de la Célula Individual
13.
Heart Rhythm ; 11(10): 1707-13, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24973560

RESUMEN

BACKGROUND: The advent of clinical next generation sequencing is rapidly changing the landscape of rare disease medicine. Molecular diagnosis of long QT syndrome (LQTS) can affect clinical management, including risk stratification and selection of pharmacotherapy on the basis of the type of ion channel affected, but results from the current gene panel testing requires 4-16 weeks before return to clinicians. OBJECTIVE: A term female infant presented with 2:1 atrioventricular block and ventricular arrhythmias consistent with perinatal LQTS, requiring aggressive treatment including epicardial pacemaker and cardioverter-defibrillator implantation and sympathectomy on day of life 2. We sought to provide a rapid molecular diagnosis for the optimization of treatment strategies. METHODS: We performed Clinical Laboratory Improvement Amendments-certified rapid whole genome sequencing (WGS) with a speed-optimized bioinformatics platform to achieve molecular diagnosis at 10 days of life. RESULTS: We detected a known pathogenic variant in KCNH2 that was demonstrated to be paternally inherited by follow-up genotyping. The unbiased assessment of the entire catalog of human genes provided by WGS revealed a maternally inherited variant of unknown significance in a novel gene. CONCLUSION: Rapid clinical WGS provides faster and more comprehensive diagnostic information at 10 days of life than does standard gene panel testing. In selected clinical scenarios such as perinatal LQTS, rapid WGS can provide more timely and clinically actionable information than can a standard commercial test.


Asunto(s)
ADN/genética , Marcadores Genéticos , Síndrome de QT Prolongado/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mutación , Muerte Súbita Cardíaca , Desfibriladores Implantables , Diagnóstico Diferencial , Electrocardiografía , Femenino , Estudios de Seguimiento , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Factores de Tiempo
15.
Circ Cardiovasc Genet ; 5(6): 602-10, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23074333

RESUMEN

BACKGROUND: The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine because of uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss-of-function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genetic variation. METHODS AND RESULTS: We analyzed the rates of single nucleotide genetic variation in all known genes from the exomes of >5000 individuals from the National Heart, Lung, and Blood Institute's Exome Sequencing Project, as well as the rates of structural variation from the Database of Genomic Variants. Most variants were rare, with over half unique to 1 individual. Cardiomyopathy-associated genes exhibited a rate of nonsense variants, about 96.1% lower than other Mendelian disease genes. We tested the ability of in silico algorithms to distinguish between a set of variants in MYBPC3, MYH7, and TNNT2 with strong evidence for pathogenicity and variants from the Exome Sequencing Project data. Algorithms based on conservation at the nucleotide level (genomic evolutionary rate profiling, PhastCons) did not perform as well as amino acid-level prediction algorithms (Polyphen-2, SIFT). Variants with strong evidence for disease causality were found in the Exome Sequencing Project data at prevalence higher than expected. CONCLUSIONS: Genes associated with cardiomyopathy carry very low rates of population variation. The existence in population data of variants with strong evidence for pathogenicity suggests that even for Mendelian disease genetics, a probabilistic weighting of multiple variants may be preferred over the single gene causality model.


Asunto(s)
Cardiomiopatías/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Sarcómeros/genética , Sarcómeros/patología , Codón sin Sentido/genética , Bases de Datos Genéticas , Exoma/genética , Frecuencia de los Genes/genética , Humanos , Mutación Missense/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...