Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(1): 217-229, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38149598

RESUMEN

Machine learning (ML) models have made inroads into chemical sciences, with optimization of chemical reactions and prediction of biologically active molecules being prime examples thereof. These models excel where physical experiments are expensive or time-consuming, for example, due to large scales or the need for materials that are difficult to obtain. Studies of natural products suffer from these issues─this class of small molecules is known for its wealth of structural diversity and wide-ranging biological activities, but their investigation is hindered by poor synthetic accessibility and lack of scalability. To facilitate the evaluation of these molecules, we designed ML models that predict which natural products can interact with a particular target or a relevant pathway. Here, we focused on discovering natural products that are capable of modulating the 5-lipoxygenase (5-LO) pathway that plays key roles in lipid signaling and inflammation. These computational approaches led to the identification of nine natural products that either directly inhibit the activity of the 5-LO enzyme or affect the cellular 5-LO pathway. Further investigation of one of these molecules, deltonin, led us to discover a new cell-type-selective mechanism of action. Our ML approach helped deorphanize natural products as well as shed light on their mechanisms and can be broadly applied to other use cases in chemical biology.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Productos Biológicos , Humanos , Araquidonato 5-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Productos Biológicos/química , Inflamación , Aprendizaje Automático
2.
J Am Chem Soc ; 145(19): 10790-10799, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37133984

RESUMEN

The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated ß-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of ß-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.


Asunto(s)
Naftoquinonas , Neoplasias , Profármacos , Animales , Humanos , Profármacos/farmacología , Profármacos/química , Paladio/química , Pez Cebra
3.
Nat Chem ; 14(7): 754-765, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35764792

RESUMEN

Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, ß-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of ß-lapachone upon antibody-mediated delivery. Conjugation of protected ß-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.


Asunto(s)
Antineoplásicos , Productos Biológicos , Profármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Ratones , Oxidación-Reducción , Profármacos/farmacología , Profármacos/uso terapéutico , Quinonas
4.
Bioconjug Chem ; 31(6): 1604-1610, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32375474

RESUMEN

The chemistry of diazo compounds has generated a huge breadth of applications in the field of organic synthesis. Their versatility combined with their tunable reactivity, stability, and chemoselectivity makes diazo compounds desirable reagents for chemical biologists. Here, we describe a method for the precise installation of diazo handles on proteins and antibodies in a mild and specific approach. Subsequent 1,3-cycloaddition reactions with strained alkynes enable both bioimaging through an in-cell "click" reaction and probing of the cysteine proteome in cell lysates. The selectivity and efficiency of these processes makes these suitable reagents for chemical biology studies.


Asunto(s)
Compuestos Azo/química , Proteínas/química , Alquinos/química , Anticuerpos/química , Reacción de Cicloadición , Humanos , Células MCF-7 , Proteómica , Coloración y Etiquetado
5.
Chem ; 3(4): 665-677, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29094109

RESUMEN

The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...