Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38238073

RESUMEN

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently, the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood. To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d motor skill training or home cage control in water-restricted male mice. "Train" and "control" neurons could be discriminated with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched by motor training, showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3 neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.


Asunto(s)
Aprendizaje , Plasticidad Neuronal , Masculino , Ratones , Animales , Plasticidad Neuronal/genética , Aprendizaje/fisiología , Neuronas/fisiología , Destreza Motora/fisiología , Agua/metabolismo
2.
Alzheimers Res Ther ; 12(1): 132, 2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33069251

RESUMEN

BACKGROUND: Self-assembly of the amyloid-ß (Aß) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer's disease (AD). However, it is clear that not all forms of Aß are equally harmful and that linking a specific aggregate to toxicity also depends on the assays and model systems used (Haass et al., J Biol. Chem 269:17741-17748, 1994; Borchelt et al., Neuron 17:1005-1013, 1996). Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aß deposition and neurodegeneration. METHODS: In this study, we examined familial mutations of Aß that increase aggregation and oligomerization, E22G and ΔE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aß fusion technology and rAAV2/1-based somatic brain transgenesis in mice to selectively express individual mutant Aß species in vivo. In parallel, we generated PhiC31-based transgenic Drosophila melanogaster expressing wild-type (WT) and Aß40 and Aß42 mutants, fused to the Argos signal peptide to assess the extent of Aß42-induced toxicity as well as to interrogate the combined effect of different Aß40 and Aß42 species. RESULTS: When expressed in the mouse brain for 6 months, Aß42 E22G, Aß42 E22Q/D23N, and Aß42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aß40WT showed no distinctive phenotype, Aß40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aß40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aß42 E22G, E22Q, and S26C, but not Aß40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aß40 (WT or mutants), in addition to Aß42WT, showed improved phenotypes, suggesting possible protective qualities for Aß40. CONCLUSIONS: These studies suggest that while some Aß40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aß42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.


Asunto(s)
Enfermedad de Alzheimer , Drosophila , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Fragmentos de Péptidos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...