Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 356(6344): 1254-1259, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28642431

RESUMEN

The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

2.
J Phys Chem Lett ; 8(8): 1856-1864, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28395511

RESUMEN

The enormous versatility in the properties of carbon materials depends on the content of the sp2 and sp3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C6H6 and C6D6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures show the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C6D6 shed light on the mechanism of polymerization of benzene. We find that C6D6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C6D6 is observed.

3.
J Chem Phys ; 145(8): 084701, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586935

RESUMEN

We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes.

4.
J Chem Phys ; 144(24): 244701, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27369527

RESUMEN

We present the pressure-temperature (PT) induced physical and chemical transformations in ammonium perchlorates (APs) up to 50 GPa and 450 °C, using diamond anvil cells and confocal micro-Raman spectroscopy, which provide new constraints for the phase diagram of AP. The results show spectral evidences for three new polymorphs (III, IV, and VI) of AP, in addition to two previously known phases (I and II), at various PT conditions with varying degrees of hydrogen bonding and lack of strong spectral evidence for previously known high-temperature cubic phase (phase V). Upon further heating, AP chemically decomposes to N2, N2O, and H2O. The present phase diagram is, therefore, in sharp contrast to the previous one, underscoring a rich polymorphism, a large stability field for solids, and a replacement of the melt with a decomposition line.

5.
6.
J Chem Phys ; 139(21): 214503, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24320387

RESUMEN

Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

7.
J Phys Chem A ; 115(42): 11889-96, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21902257

RESUMEN

The energetic material ammonium nitrate (AN, NH(4)NO(3)) has been studied under both hydrostatic and nonhydrostatic conditions using diamond anvil cells combined with micro-Raman spectroscopy and synchrotron X-ray powder diffraction. The refined powder X-ray data indicates that under hydrostatic conditions AN-IV (orthorhombic, Pmmn) is stable to above 40 GPa. In one nonhydrostatic compression experiment a volume collapse was observed, suggesting an isostructural phase transition to a "metastable" phase IV' between 17 and 28 GPa. The structures of phase IV and IV' are similar with the subtle difference in the hydrogen-bonding network; that is, a noticeably shorter N1···O1 distance seen in phase IV'. This hydrogen bond has a significant component along the b-axis, which proves to be the most compressible until cell axis over the entire pressure range. It is likely that the shear stress of the nonhydrostatic experiment drives the phase IV-to-IV' transition to occur. We compare the present isotherms of phase IV and IV' in both static and nonhydrostatic conditions with the previously obtained Hugoniot and find that the nonhydrostatic isotherm approximately matches the Hugoniot. On the basis of this comparison, we conjecture that a chemical reaction or phase transition may occur in AN under dynamic pressure conditions at 22 GPa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...