Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6519-6536, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38592023

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.


Asunto(s)
Antivirales , SARS-CoV-2 , Tiofenos , Replicación Viral , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Tiofenos/farmacología , Tiofenos/química , Tiofenos/síntesis química , Replicación Viral/efectos de los fármacos , Humanos , SARS-CoV-2/efectos de los fármacos , Animales , Descubrimiento de Drogas , Ratones , Cristalografía por Rayos X , Tratamiento Farmacológico de COVID-19 , Relación Estructura-Actividad , Virus de la Hepatitis Murina/efectos de los fármacos
2.
bioRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234730

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 µM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.

3.
Biomolecules ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36139014

RESUMEN

Malate dehydrogenase (MDH), which catalyzes a reversible conversion of L-malate to oxaloacetate, plays essential roles in common metabolic processes, such as the tricarboxylic acid cycle, the oxaloacetate-malate shuttle, and the glyoxylate cycle. MDH2 has lately been recognized as a promising anticancer target; however, the structural information for the human homologue with natural ligands is very limited. In this study, various complex structures of hMDH2, with its substrates and/or cofactors, were solved by X-ray crystallography, which could offer knowledge about the molecular and enzymatic mechanism of this enzyme and be utilized to design novel inhibitors. The structural comparison suggests that phosphate binds to the substrate binding site and brings the conformational change of the active loop to a closed state, which can secure the substate and cofactor to facilitate enzymatic activity.


Asunto(s)
Malato Deshidrogenasa , Malatos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Glioxilatos , Humanos , Ligandos , Malato Deshidrogenasa/química , Malatos/química , NAD/metabolismo , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Fosfatos
4.
Pharmaceutics ; 14(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145648

RESUMEN

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are related to cell proliferation, gene expression, and cell death. JNK isoform 3 (JNK3) is an important therapeutic target in varieties of pathological conditions including cancers and neuronal death. There is no approved drug targeting JNKs. To discover chemical inhibitors of JNK3, virtual fragment screening, the saturation transfer difference (STD) NMR, in vitro kinase assay, and X-ray crystallography were employed. A total of 27 fragments from the virtually selected 494 compounds were identified as initial hits via STD NMR and some compounds showed the inhibition of the activity of JNK3 in vitro. The structures of JNK3 with a fragment and a potent inhibitor were determined by X-ray crystallography. The fragment and inhibitor shared a common JNK3-binding feature. The result shows that fragment screening by NMR spectroscopy is a very efficient method to screen JNK3 binders and the structure of JNK3-inhibitor complex can be used to design and develop more potent inhibitors.

5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142500

RESUMEN

Our structure-based virtual screening of the FDA-approved drug library has revealed that sonidegib, a smoothened antagonist clinically used to treat basal cell carcinoma, is a potential c-Jun N-terminal kinase 3 (JNK3) inhibitor. This study investigated the binding of sonidegib to JNK3 via 19F NMR and its inhibitory effect on JNK phosphorylation in BV2 cells. Pharmacological properties of sonidegib to exert anti-inflammatory and anti-migratory effects were also characterized. We found that sonidegib bound to the ATP binding site of JNK3 and inhibited JNK phosphorylation in BV2 cells, confirming our virtual screening results. Sonidegib also inhibited the phosphorylation of MKK4 and c-Jun, the upstream and downstream signals of JNK, respectively. It reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors, including interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO), and the expression of inducible NO synthase and cyclooxygenase-2. The LPS-induced cell migration was suppressed by sonidegib. Sonidegib inhibited the LPS-induced IκBα phosphorylation, thereby blocking NF-κB nuclear translocation. Consistent with these findings, orally administered sonidegib attenuated IL-6 and TNF-α levels in the brains of LPS-treated mice. Collectively, our results indicate that sonidegib suppresses inflammation and cell migration in LPS-treated BV2 cells and mice by inhibiting JNK and NF-κB signaling. Therefore, sonidegib may be implicated for drug repurposing to alleviate neuroinflammation associated with microglial activation.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Adenosina Trifosfato/metabolismo , Animales , Antiinflamatorios/química , Compuestos de Bifenilo , Movimiento Celular , Ciclooxigenasa 2/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Piridinas , Factor de Necrosis Tumoral alfa/metabolismo
6.
Biomol Ther (Seoul) ; 30(5): 455-464, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993250

RESUMEN

Efonidipine, a calcium channel blocker, is widely used for the treatment of hypertension and cardiovascular diseases. In our preliminary study using structure-based virtual screening, efonidipine was identified as a potential inhibitor of c-Jun N-terminal kinase 3 (JNK3). Although its antihypertensive effect is widely known, the role of efonidipine in the central nervous system has remained elusive. The present study investigated the effects of efonidipine on the inflammation and cell migration induced by lipopolysaccharide (LPS) using murine BV2 and human HMC3 microglial cell lines and elucidated signaling molecules mediating its effects. We found that the phosphorylations of JNK and its downstream molecule c-Jun in LPS-treated BV2 cells were declined by efonidipine, confirming the finding from virtual screening. In addition, efonidipine inhibited the LPS-induced production of pro-inflammatory factors, including interleukin-1ß (IL-1ß) and nitric oxide. Similarly, the IL-1ß production in LPS-treated HMC3 cells was also inhibited by efonidipine. Efonidipine markedly impeded cell migration stimulated by LPS in both cells. Furthermore, it inhibited the phosphorylation of inhibitor kappa B, thereby suppressing nuclear translocation of nuclear factor-κB (NF-κB) in LPS-treated BV2 cells. Taken together, efonidipine exerts anti-inflammatory and anti-migratory effects in LPS-treated microglial cells through inhibition of the JNK/NF-κB pathway. These findings imply that efonidipine may be a potential candidate for drug repositioning, with beneficial impacts on brain disorders associated with neuroinflammation.

7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445767

RESUMEN

The c-Jun N-terminal kinases (JNKs) are implicated in many neuropathological conditions, including neurodegenerative diseases. To explore potential JNK3 inhibitors from the U.S. Food and Drug Administration-approved drug library, we performed structure-based virtual screening and identified azelastine (Aze) as one of the candidates. NMR spectroscopy indicated its direct binding to the ATP-binding site of JNK3, validating our observations. Although the antihistamine effect of Aze is well documented, the involvement of the JNK pathway in its action remains to be elucidated. This study investigated the effects of Aze on lipopolysaccharide (LPS)-induced JNK phosphorylation, pro-inflammatory mediators, and cell migration in BV2 microglial cells. Aze was found to inhibit the LPS-induced phosphorylation of JNK and c-Jun. It also inhibited the LPS-induced production of pro-inflammatory mediators, including interleukin-6, tumor necrosis factor-α, and nitric oxide. Wound healing and transwell migration assays indicated that Aze attenuated LPS-induced BV2 cell migration. Furthermore, Aze inhibited LPS-induced IκB phosphorylation, thereby suppressing nuclear translocation of NF-κB. Collectively, our data demonstrate that Aze exerts anti-inflammatory and anti-migratory effects through inhibition of the JNK/NF-κB pathway in BV2 cells. Based on our findings, Aze may be a potential candidate for drug repurposing to mitigate neuroinflammation in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases.


Asunto(s)
Antiinflamatorios/farmacología , Movimiento Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Ftalazinas/farmacología , Animales , Línea Celular , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
8.
Arch Toxicol ; 95(2): 541-556, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074372

RESUMEN

Chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) are biocidal preservatives and the active ingredients in Kathon CG, which contains ca. 1.5% mixture of CMIT and MIT at a ratio of 3:1 (CMIT/MIT). CMIT/MIT was misused as humidifier disinfectant products, which caused serious health problems in Korea. Here, the vascular effects of CMIT/MIT were investigated to evaluate claims of putative cardiovascular toxicity observed in humidifier disinfectant users. CMIT/MIT did not affect the basal tension of the rat thoracic aorta up to 2.5 µg/mL in myograph experiments. Instead, pretreatment with CMIT/MIT impaired phenylephrine- or 5-hydroxytryptamine-induced vasoconstriction in a range of 0.5-2.5 µg/mL, which was largely irreversible and not recovered by washing out the CMIT/MIT. Similarly, the application of CMIT/MIT to pre-contracted aorta caused a gradual loss of tension. In primary cultured vascular smooth muscle cells (VSMCs), CMIT/MIT caused thiol depletion, which in turn led to cytosolic Zn2+ elevation and reactive oxygen species (ROS) formation. CMIT/MIT-induced shrinkage, detachment, and lysis of VSMCs depending on the concentration and the treatment time. All events induced by CMIT/MIT were prevented by a thiol donor N-acetylcysteine (NAC). Cytolysis could be inhibited by a Zn2+ chelator TPEN and a superoxide scavenger TEMPOL, whereas they did not affect shrinkage and detachment. In accordance with these results, CMIT/MIT-exposed aortas exhibited dissociation and collapse of tissue in histology analysis. Taken together, CMIT/MIT causes functional impairment and tissue damage to blood vessels by depleting thiol and thereby elevating cytosolic Zn2+ and generating ROS. Therefore, exposure to CMIT/MIT in consumer products may be a risk factor for cardiovascular disorders.


Asunto(s)
Músculo Liso Vascular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Tiazoles/toxicidad , Zinc/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Desinfectantes/toxicidad , Células HEK293 , Humanos , Humidificadores , Masculino , Conservadores Farmacéuticos/toxicidad , Ratas , Ratas Sprague-Dawley , República de Corea , Vasoconstricción/efectos de los fármacos
9.
Comput Struct Biotechnol J ; 18: 1440-1457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637042

RESUMEN

The activation of c-Jun N-terminal kinases (JNKs) plays an important role in physiological processes including neuronal function, immune activity, and development, and thus, JNKs have been a therapeutic target for various diseases such as neurodegenerative diseases, inflammation, and cancer. Efforts to develop JNK-specific inhibitors have been ongoing for several decades. In this process, the structures of JNK in complex with various inhibitors have contributed greatly to the design of novel compounds and to the elucidation of structure-activity relationships. Almost 100 JNK structures with various compounds have been determined. Here we summarize the information gained from these structures and classify the inhibitors into several groups based on the binding mode. These groups include inhibitors in the open conformation and closed conformation of the gatekeeper residue, non-ATP site binders, peptides, covalent inhibitors, and type II kinase inhibitors. Through this work, deep insight into the interaction of inhibitors with JNKs can be gained and this will be helpful for developing novel, potent, and selective inhibitors.

10.
J Clin Med ; 9(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046075

RESUMEN

Fisetin (3,3',4',7-tetrahydroxyflavone) is a widely distributed natural flavonol. It interacts with albumin, and thereby generates a fluorescence signal quantitatively. Based on such optical characteristics, we postulated that fisetin was applicable to the quantitation of albumin as an indicator. To establish the fisetin-based albumin assay, we examined the optical properties of fisetin and fisetin-albumin complex. The assay conditions were fine-tuned to fit for the actual concentration of serum albumin and to generate an optimal signal with a high signal-to-background ratio. The reaction between fisetin and albumin was linear in a wide range of concentrations. Non-protein serum components did not interfere with the reaction. The reactivity of fisetin was apparently specific for albumin among serum proteins. Both plasma and serum were compatible with the assay. The samples could be stored in a refrigerator or a freezer without the loss of reactivity toward fisetin. The generation and decay rates of the signal were acceptable for manual handling. The recovery of fortified albumin in serum was confirmed and the assay was validated with human sera. Fisetin-based albumin assay is suitable for clinical laboratory testing, considering the simple and short procedure, high specificity and sensitivity, linearity over a wide range of albumin concentrations, and, presumably, potential automatability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA