Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 28(3): 60, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35156141

RESUMEN

For the purpose of discovering potential inhibitors of ß-amyloid (BACE1), which is a crucial element in Alzheimer's disease (AD) pathogenesis, an in silico study of naturally occurring compounds was performed using precise computational approaches. Autodock4 package was preliminary used to predict the binding affinities to BACE1 of more than four thousand compounds presented in the Vietnamese plants (VIETHERB) database. Based on docking results, twenty top-lead compounds having the largest docking energy to BACE1 were rigorously examined using steered molecular dynamics (SMD) simulations. Interestingly, SMD results found that the binding affinity values of three compounds, including myricetin 3-O-(3''-galloylrhamnopyranoside), quercetin 3-O-neohesperidoside, and hydroxysafflor yellow A, are remarkably higher than that of the well-known BACE1 inhibitor, 23I, and these compounds can thus be considered the promising candidates for inhibitors of BACE1.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Inhibidores Enzimáticos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
2.
ChemSusChem ; 10(13): 2823-2832, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28480614

RESUMEN

Acylation is an effective C-C bond-forming reaction to condense acetic acid and lignin-derived aromatic compounds into acetophenones, valuable precursors to fuels and chemicals. However, acetic acid is intrinsically an ineffective acylating agent. Here, we report that its acylation activity can be greatly enhanced by forming intermediate aromatic esters directly derived from acetic acid and phenolic compounds. Additionally, the acylation reaction was studied in the liquid phase over acid zeolites and was found to happen in two steps: 1) formation of an acylium ion and 2) C-C bond formation between the acylium ion and the aromatic substrate. Each of these steps may be rate-limiting, depending on the type of acylating agent and the aromatic substrate. Oxygen-containing substituents, such as -OH and -OCH3 , can activate aromatic substrates for step 2, with -OH> -OCH3 , whereas alkyl substituent -R cannot. At the same time, aromatic esters can rearrange to acetophenones by both an intramolecular pathway and, preferentially, an intermolecular one.


Asunto(s)
Ácido Acético/química , Benceno/química , Ésteres/química , Acilación , Cinética , Modelos Moleculares , Conformación Molecular , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...