Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Anthropol ; 30(1): 50-62, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33604991

RESUMEN

Despite advances in our understanding of the geographic and temporal scope of the Paleolithic record, we know remarkably little about the evolutionary and ecological consequences of changes in human behavior. Recent inquiries suggest that human evolution reflects a long history of interconnections between the behavior of humans and their surrounding ecosystems (e.g., niche construction). Developing expectations to identify such phenomena is remarkably difficult because it requires understanding the multi-generational impacts of changes in behavior. These long-term dynamics require insights into the emergent phenomena that alter selective pressures over longer time periods which are not possible to observe, and are also not intuitive based on observations derived from ethnographic time scales. Generative models show promise for probing these potentially unexpected consequences of human-environment interaction. Changes in the uses of landscapes may have long term implications for the environments that hominins occupied. We explore other potential proxies of behavior and examine how modeling may provide expectations for a variety of phenomena.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Arqueología , Dieta , Hominidae/fisiología , Humanos , Sudáfrica
2.
Ecol Evol ; 10(2): 962-979, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32015858

RESUMEN

Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning.We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution.We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the δ13C and δ13Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our δD record suggests physiological adaptations of woody species to higher atmospheric pCO2 concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.

4.
Nature ; 560(7716): 76-79, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988081

RESUMEN

The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1-4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9-11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20-25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa-both in terms of its long-term state and marked precessional variability-could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus.


Asunto(s)
Evolución Biológica , Clima , Hominidae , Lluvia , Alcanos/análisis , Alcanos/química , Animales , Extinción Biológica , Foraminíferos/química , Bosques , Historia Antigua , Hidrología , Océano Índico , Lagos , Malaui , Plantas/química , Ríos , Ciclo Hidrológico , Ceras/química , Humedales
6.
Proc Natl Acad Sci U S A ; 115(13): 3261-3266, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29483260

RESUMEN

A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ''rainforest crisis'' to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. [Formula: see text]13C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. [Formula: see text]D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.


Asunto(s)
Arqueología , Cambio Climático , Ecosistema , Bosque Lluvioso , África , Camerún , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...