Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-22458255

RESUMEN

For decades, there have been debates regarding the nature of the relationship between exposure to low doses of ionizing radiation and cancer risk. Under the linear no-threshold hypothesis, which serves as a theoretical basis for current radiation protection standards, the risk of cancer at low levels of exposure is presumed to be directly proportional to dose. Opponents of this hypothesis claim that there are threshold doses for radiation carcinogenesis, or even a reduction in cancer risk at low doses (a phenomenon referred to as "radiation hormesis"). Epidemiological, animal, molecular, and cellular studies were conducted to resolve this controversy, although each of these study types has its strengths and limitations. Although the results of animal experiments are not directly applicable to humans, data can substantially add to our knowledge on the form of relationship between radiation dose and cancer risk in a wide range of doses. Laboratory animals are a homogeneous population with little biological variability; animal experiments are conducted under controlled conditions with good estimates of radiation doses. In order to address the question of whether or not the dose-response curve for radiation carcinogens is linear at low doses, a comprehensive database of animal carcinogenesis experiments was assembled involving exposure to different types of ionizing gradation. The database includes virtually all publicly accessible data on the induction of radiogenic cancer in laboratory mammals. This review provides a descriptive overview of the experiments included in the database, along with a qualitative assessment of the shape of the dose-response relationship for radiation carcinogenesis at low doses in experimental animals.


Asunto(s)
Bases de Datos Factuales , Neoplasias Inducidas por Radiación , Radiación Ionizante , Animales , Relación Dosis-Respuesta en la Radiación , Hormesis
2.
Artículo en Inglés | MEDLINE | ID: mdl-22458256

RESUMEN

A database containing 800 datasets on the incidence of specific tumor types from 262 radiation carcinogenicity experiments identified in a comprehensive literature search through September 2000 was analyzed for evidence of hormesis. This database includes lifetime studies of tumorigenic responses in mice, rats, and dogs to exposures to alpha, beta, gamma, neutron, or x-ray radiation. A J-shaped dose response, in the form of a significant decreased response at some low dose followed by a significant increased response at a higher dose, was found in only four datasets from three experiments. Three of these datasets involved the same control animals and two also shared dosed animals; the J shape in the fourth dataset appeared to be the result of an outlier within an otherwise monotonic dose response. A meta-analysis was conducted to determine whether there was an excess of dose groups with decreases in tumor response below that in controls at doses below no-observed-effect levels (NOELs) in individual datasets. Because the probability of a decreased response is generally not equal to the probability of an increased response even in the null case, the meta-analysis focused on comparing the number of statistically significant diminished responses to the number expected, assuming no dose effect below the NOEL. Only 54 dose groups out of the total of 2579 in the database had doses below the dataset-specific NOEL and that satisfied an a priori criterion for sufficient power to detect a reduced response. Among these 54, a liberal criterion for defining a significant decreases identified 15 such decreases, versus 54 × 0.2 = 10.8 expected. The excess in significant reductions was accounted for almost entirely by the excess from neutron experiments (10 observed, 6.2 expected). Nine of these 10 dose groups involved only 2 distinct control groups, and 2 pairs from the 10 even shared dosed animals. Given this high degree of overlap, this small excess did not appear remarkable, although the overlap prevented a formal statistical analysis. A comprehensive post hoc evaluation using a range of NOEL definitions and alternative ways of restricting the data entering the analysis did not produce materially different results. A second meta-analysis found that, in every possible low dose range ([0, d] for every dose, d) of each of the radiation types, the number of dose groups with significantly increased tumorigenic responses was either close to or exceeded the number showing significantly reduced responses. This meta-analysis was considered to be the more definitive one. Not only did it take dose into account by looking for consistent evidence of hormesis throughout defined low-dose ranges, it was also potentially less susceptible to limitations in experimental protocols that would cause individual animals to respond in a non-independent fashion. Overall, this study found little evidence in a comprehensive animal radiation database to support the hormesis hypothesis. However, the ability of the database to detect a hormetic effect was limited both by the small number of dose groups with doses below the range where positive effects have been found in epidemiological studies (≤ 0.1 Gy) and by the limited power of many of these dose groups for detecting a decrease in response.


Asunto(s)
Neoplasias Inducidas por Radiación , Radiación Ionizante , Animales , Interpretación Estadística de Datos , Bases de Datos Factuales , Perros , Relación Dosis-Respuesta en la Radiación , Hormesis , Ratones , Modelos Estadísticos , Nivel sin Efectos Adversos Observados , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA