Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Neurophysiol ; 165: 16-25, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945031

RESUMEN

OBJECTIVE: Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS). METHODS: rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex). RESULTS: For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site. CONCLUSIONS: These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model. SIGNIFICANCE: This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen
2.
Wiley Interdiscip Rev Cogn Sci ; 12(4): e1553, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33470055

RESUMEN

Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Encéfalo , Humanos , Trastornos del Humor/diagnóstico , Trastornos del Humor/terapia , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA