Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867447

RESUMEN

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inflamación/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología , Ratones Noqueados , Endotelio/metabolismo , Permeabilidad Capilar , Endotelio Vascular/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 313(1): H179-H189, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28476918

RESUMEN

Approaches to reduce excessive edema due to the microvascular hyperpermeability that occurs during ischemia-reperfusion (I/R) are needed to prevent muscle compartment syndrome. We tested the hypothesis that cAMP-activated mechanisms actively restore barrier integrity in postischemic striated muscle. We found, using I/R in intact muscles and hypoxia-reoxygenation (H/R, an I/R mimic) in human microvascular endothelial cells (HMVECs), that hyperpermeability can be deactivated by increasing cAMP levels through application of forskolin. This effect was seen whether or not the hyperpermeability was accompanied by increased mRNA expression of VEGF, which occurred only after 4 h of ischemia. We found that cAMP increases in HMVECs after H/R, suggesting that cAMP-mediated restoration of barrier function is a physiological mechanism. We explored the mechanisms underlying this effect of cAMP. We found that exchange protein activated by cAMP 1 (Epac1), a downstream effector of cAMP that stimulates Rap1 to enhance cell adhesion, was activated only at or after reoxygenation. Thus, when Rap1 was depleted by small interfering RNA, H/R-induced hyperpermeability persisted even when forskolin was applied. We demonstrate that 1) VEGF mRNA expression is not involved in hyperpermeability after brief ischemia, 2) elevation of cAMP concentration at reperfusion deactivates hyperpermeability, and 3) cAMP activates the Epac1-Rap1 pathway to restore normal microvascular permeability. Our data support the novel concepts that 1) different hyperpermeability mechanisms operate after brief and prolonged ischemia and 2) cAMP concentration elevation during reperfusion contributes to deactivation of I/R-induced hyperpermeability through the Epac-Rap1 pathway. Endothelial cAMP management at reperfusion may be therapeutic in I/R injury.NEW & NOTEWORTHY Here, we demonstrate that 1) stimulation of cAMP production deactivates ischemia-reperfusion-induced hyperpermeability in muscle and endothelial cells; 2) VEGF mRNA expression is not enhanced by brief ischemia, suggesting that VEGF mechanisms do not activate immediate postischemic hyperpermeability; and 3) deactivation mechanisms operate via cAMP-exchange protein activated by cAMP 1-Rap1 to restore integrity of the endothelial barrier.


Asunto(s)
Permeabilidad Capilar , AMP Cíclico/metabolismo , Endotelio Vascular/fisiopatología , Daño por Reperfusión/fisiopatología , Proteínas de Unión a Telómeros/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Cricetinae , Masculino , Mesocricetus , Ratas , Ratas Sprague-Dawley
3.
J Biol Chem ; 286(35): 30409-30414, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757745

RESUMEN

Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.


Asunto(s)
Citosol/enzimología , Óxido Nítrico Sintasa de Tipo III/fisiología , Calibración , Membrana Celular/metabolismo , Citosol/metabolismo , ADN Complementario/metabolismo , Humanos , Inflamación , Microscopía Fluorescente/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Permeabilidad , Fosforilación , Factor de Activación Plaquetaria/metabolismo , Transporte de Proteínas , Fracciones Subcelulares
4.
Microcirculation ; 16(4): 323-30, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19235626

RESUMEN

OBJECTIVE: We tested the hypothesis that differential stimulation of nitric oxide (NO) production can be induced in pre- and postcapillary segments of the microcirculation in the hamster cheek pouch. MATERIALS AND METHODS: We applied acetylcholine (ACh) or platelet-activating factor (PAF) topically and measured perivascular NO concentration ([NO]) with NO-sensitive microelectrodes in arterioles and venules of the hamster cheek pouch. We also measured NO in cultured coronary endothelial cells (CVEC) after ACh or PAF. RESULTS: ACh increased periarteriolar [NO] significantly in a dose-dependent manner. ACh at 1 microM increased [NO] from 438.1+/-43.4 nM at baseline to 647.9+/-66.3 nM, while 10 microM of ACh increased [NO] from baseline to 1,035.0+/-59.2 nM (P<0.05). Neither 1 nor 10 microM of ACh changed perivenular [NO] in the hamster cheek pouch. PAF, at 100 nM, increased perivenular [NO] from 326.6+/-50.8 to 622.8+/-41.5 nM. Importantly, 100 nM of PAF did not increase periarteriolar [NO]. PAF increased [NO] from 3.6+/-2.1 to 455.5+/-19.9 in CVEC, while ACh had no effect. CONCLUSIONS: We conclude that NO production can be stimulated in a differential manner in pre- and postcapillary segments in the hamster cheek pouch. ACh selectively stimulates the production of NO only in arterioles, while PAF stimulates the production of NO only in venules.


Asunto(s)
Acetilcolina/farmacología , Microvasos/metabolismo , Óxido Nítrico/biosíntesis , Factor de Activación Plaquetaria/farmacología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Mejilla/irrigación sanguínea , Vasos Coronarios , Cricetinae , Endotelio Vascular/citología , Microelectrodos , Microvasos/efectos de los fármacos , Óxido Nítrico/análisis , Vénulas/efectos de los fármacos , Vénulas/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 295(4): H1642-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18708444

RESUMEN

Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.


Asunto(s)
Permeabilidad Capilar , Caveolas/enzimología , Endocitosis , Células Endoteliales/enzimología , Inflamación/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor de Activación Plaquetaria/metabolismo , Animales , Bovinos , Células Cultivadas , Dextranos/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Transfección
6.
Am J Physiol Regul Integr Comp Physiol ; 293(2): R592-600, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17537841

RESUMEN

Physiological changes in extracellular glucose, insulin, and leptin regulate glucose-excited (GE) and glucose-inhibited (GI) neurons in the ventromedial hypothalamus (VMH). Nitric oxide (NO) signaling, which is involved in the regulation of food intake and insulin signaling, is altered in obesity and diabetes. We previously showed that glucose and leptin inhibit NO production via the AMP-activated protein kinase (AMPK) pathway, while insulin stimulates NO production via the phosphatidylinositol-3-OH kinase (PI3K) pathway in VMH GI neurons. Hyperglycemia-induced inhibition of AMPK reduces PI3K signaling by activating the mammalian target of rapamycin (mTOR). We hypothesize that hyperglycemia impairs glucose and insulin-regulated NO production in VMH GI neurons. This hypothesis was tested in VMH neurons cultured in hyperglycemic conditions or from streptozotocin-induced type 1 diabetic rats using NO- and membrane potential-sensitive dyes. Neither decreased extracellular glucose from 2.5 to 0.5 mM, nor 5 nM insulin increased NO production in VMH neurons in either experimental condition. Glucose- and insulin-regulated NO production was restored in the presence of the AMPK activator, 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside or the mTOR inhibitor rapamycin. Finally, decreased glucose and insulin did not alter membrane potential in VMH neurons cultured in hyperglycemic conditions or from streptozotocin-induced rats. These data suggest that hyperglycemia impairs glucose and insulin regulation of NO production through AMPK inhibition. Furthermore, glucose and insulin signaling pathways interact via the mTOR pathway.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/metabolismo , Insulina/sangre , Óxido Nítrico/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Proteínas Quinasas Activadas por AMP , Enfermedad Aguda , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Fluoresceínas , Masculino , Potenciales de la Membrana/fisiología , Complejos Multienzimáticos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR , Núcleo Hipotalámico Ventromedial/citología
7.
Am J Physiol Heart Circ Physiol ; 292(5): H2131-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17172272

RESUMEN

Danshen, a Chinese herb, reduces hypertension in Oriental medicine. We hypothesized that Danshen acts partially through endothelial nitric oxide synthase (eNOS) signaling mechanisms. We tested the hypothesis using tanshinone II(A), an active ingredient of Danshen, and the two-kidney, one-clip renovascular hypertension model in hamsters. Oral tanshinone (50 microg/100 g body wt) reduced mean arterial pressure (MAP) from 161.2 +/- 6.9 to 130.0 +/- 7.8 mmHg (mean +/- SE; P < 0.05) in hypertensive hamsters. MAP in sham-operated hamsters was 114.3 +/- 9.2 mmHg. Topical tanshinone at 1 microg/ml and 5 microg/ml increased normalized arteriolar diameter from 1.00 to 1.25 +/- 0.08 and 1.57 +/- 0.11, respectively, and increased periarteriolar nitric oxide concentration from 87.1 +/- 11.3 to 146.9 +/- 23.1 nM (P < 0.05) at 5 microg/ml in hamster cheek pouch. N(G)-monomethyl-L-arginine inhibited tanshinone-induced vasodilation. Hypertension reduced eNOS protein relative to sham-operated control. Tanshinone prevented the hypertension-induced reduction of eNOS and increased eNOS expression to levels higher than sham-operated control in hamster cheek pouch. Topical tanshinone increased normalized arteriolar diameter from 1.0 to 1.47 +/- 0.08 in the cremaster muscle of control mice and to 1.12 +/- 0.13 in cremasters of eNOS knockout mice. In ECV-304 cells transfected with eNOS-green fluorescent protein, tanshinone increased eNOS protein expression 1.35 +/- 0.05- and 1.85 +/- 0.07-fold above control after 5-min and 1-h application, respectively. Tanshinone also increased eNOS phosphorylation 1.19 +/- 0.07- and 1.72 +/- 0.20-fold relative to control after 5-min and 1-h application. Our data provide a basis to understand the action of a Chinese herb used in alternative medicine. We conclude that eNOS stimulation is one mechanism by which tanshinone induces vasodilation and reduces blood pressure.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Microcirculación/fisiopatología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Cricetinae , Sistemas de Liberación de Medicamentos/métodos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Microcirculación/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III , Salvia miltiorrhiza , Resultado del Tratamiento
8.
Microcirculation ; 13(7): 577-85, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16990216

RESUMEN

OBJECTIVE: To test the hypothesis that acupuncture on stomach 36 point (ST-36) reduces hypertension by activating nitric oxide synthase signaling mechanisms. METHODS: The authors used the two-kidney, one-clip renal hypertension (2K1C) hamster model with electroacupuncture treatment. RESULTS: Thirty-minute daily electroacupuncture treatment for 5 days reduced mean arterial pressure from 160.0 +/- 7.6 to 128.0 +/- 4.3 mmHg (mean +/- SEM), compared to 115.0 +/- 7.2 mmHg in sham-operated hamsters. Electroacupuncture increased periarteriolar NO concentration from 309.0 +/- 21.7 nM to 417.9 +/- 20.9 nM in the 2K1C hamster cheek pouch microcirculation when measured with NO-sensitive microelectrodes. Hypertension reduced endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) proteins relative to the sham-operated control, as measured by Western blotting. Electroacupuncture prevented the reduction of eNOS and nNOS associated with hypertension and showed even higher eNOS and nNOS expressions than sham-operated control in stomach and cheek pouch tissues, which are on the stomach meridian. Analysis of liver tissue, a non-stomach-meridian organ, indicated that electroacupuncture did not have a significant benefit in terms of enhanced expressions of eNOS and nNOS in the treated 2K1C hypertensive group. CONCLUSIONS: Activation of eNOS and nNOS is one of the mechanisms through which ST-36 electroacupuncture reduces blood pressure; this reduction works through the stomach meridian.


Asunto(s)
Electroacupuntura , Hipertensión Renovascular/enzimología , Hipertensión Renovascular/terapia , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Puntos de Acupuntura , Animales , Arteriolas/metabolismo , Presión Sanguínea , Mejilla , Cricetinae , Mucosa Gástrica/metabolismo , Hipertensión Renovascular/fisiopatología , Hígado/metabolismo , Masculino , Mesocricetus , Microcirculación/metabolismo , Modelos Cardiovasculares , Mucosa Bucal/irrigación sanguínea , Óxido Nítrico/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 291(3): H1058-64, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16679407

RESUMEN

Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10(-5) M, 10(-4) M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10(-7) M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation.


Asunto(s)
Permeabilidad Capilar/fisiología , Endotelio Vascular/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Acetilcolina/farmacología , Animales , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Cricetinae , Citosol/enzimología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Regulación Enzimológica de la Expresión Génica , Aparato de Golgi/enzimología , Humanos , Masculino , Mesocricetus , Óxido Nítrico/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Factor de Activación Plaquetaria/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...