Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5794, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987258

RESUMEN

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.


Asunto(s)
Centrosoma , Cinetocoros , Plasmodium falciparum , Proteínas Protozoarias , Huso Acromático , Cinetocoros/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Centrosoma/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Huso Acromático/metabolismo , Humanos , Merozoítos/metabolismo , Merozoítos/fisiología , Mitosis , Centrómero/metabolismo , Membrana Nuclear/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo
2.
Am J Trop Med Hyg ; 111(1): 11-25, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38714193

RESUMEN

The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015. However, the proportion of severe malaria cases increased over the study period. Also, a trend of decreasing average parasitemia and increasing average gametocyte density suggests a shift toward submicroscopic infections and an increase in transmission commitment characteristic of low-transmission regions. Although transmission occurred throughout the year, 75% of the cases occurred between June and December, overlapping with the monsoon (June-October), which featured rainfall above yearly average, minimal diurnal temperature variation, and high relative humidity. Sociodemographic factors also had a significant association with malaria cases, with cases being more frequent in the 15-50-year-old age group, men, construction workers, and people living in urban areas within the GMC catchment region. Our environmental model of malaria transmission projects almost negligible transmission at the beginning of 2025 (annual parasitic index: 0.0095, 95% CI: 0.0075-0.0114) if the current control measures continue undisrupted.


Asunto(s)
Malaria , Humanos , India/epidemiología , Adolescente , Femenino , Adulto , Masculino , Niño , Persona de Mediana Edad , Adulto Joven , Preescolar , Lactante , Malaria/transmisión , Malaria/epidemiología , Malaria/prevención & control , Anciano , Estaciones del Año , Hospitales/estadística & datos numéricos , Erradicación de la Enfermedad , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/prevención & control
3.
Front Cell Infect Microbiol ; 14: 1304839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572319

RESUMEN

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results: We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions: We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.


Asunto(s)
Antimaláricos , Babesia , Babesiosis , Malaria Falciparum , Malaria , Parásitos , Plasmodium , Animales , Humanos , Babesiosis/tratamiento farmacológico , Malaria/parasitología , Eritrocitos/parasitología , Antimaláricos/farmacología , Plasmodium falciparum
4.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573856

RESUMEN

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Asunto(s)
Eritrocitos , Plasmodium falciparum , Polisacáridos , Proteínas Protozoarias , Humanos , Antígenos de Protozoos/metabolismo , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Eritrocitos/parasitología , Eritrocitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
5.
Curr Opin Microbiol ; 78: 102430, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38306915

RESUMEN

The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.


Asunto(s)
Malaria Falciparum , Malaria , Animales , Humanos , Cromatina/genética , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Epigénesis Genética , Mamíferos
6.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377214

RESUMEN

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Asunto(s)
Antiinfecciosos , Babesia , Babesiosis , Humanos , Babesia/genética , Fosfatasa Alcalina , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Genómica , Antiinfecciosos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA