Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Res ; 25(1): 88, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336710

RESUMEN

BACKGROUND: Long-term outcomes of lung transplantation (LTx) remain hampered by chronic lung allograft dysfunction (CLAD). Matrix metalloproteinase 9 (MMP-9) is a secretory endopeptidase identified as a key mediator in fibrosis processes associated with CLAD. The objective of this study was to investigate whether plasma MMP9 levels may be prognostic of CLAD development. METHODS: Participants were selected from the Cohort in Lung Transplantation (COLT) for which a biocollection was associated. We considered two time points, year 1 (Y1) and year 2 (Y2) post-transplantation, for plasma MMP-9 measurements. We analysed stable recipients at those time points, comparing those who would develop a CLAD within the 2 years following the measurement to those who would remain stable 2 years after. RESULTS: MMP-9 levels at Y1 were not significantly different between the CLAD and stable groups (230 ng/ml vs. 160 ng/ml, p = 0.4). For the Y2 analysis, 129 recipients were included, of whom 50 developed CLAD within 2 years and 79 remained stable within 2 years. MMP-9 plasma median concentrations were higher in recipients who then developed CLAD than in the stable group (230 ng/ml vs. 118 ng/ml, p = 0.003). In the multivariate analysis, the Y2 MMP-9 level was independently associated with CLAD, with an average increase of 150 ng/ml (95% CI [0-253], p = 0.05) compared to that in the stable group. The Y2 ROC curve revealed a discriminating capacity of blood MMP-9 with an area under the curve of 66%. CONCLUSION: Plasmatic MMP-9 levels measured 2 years after lung transplantation have prognostic value for CLAD.


Asunto(s)
Trasplante de Pulmón , Metaloproteinasa 9 de la Matriz , Humanos , Pronóstico , Aloinjertos , Trasplante de Pulmón/efectos adversos , Pulmón , Biomarcadores , Estudios Retrospectivos
2.
Front Med (Lausanne) ; 10: 1126697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968829

RESUMEN

Background: Chronic lung allograft dysfunction (CLAD) is the leading cause of poor long-term survival after lung transplantation (LT). Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) aimed to predict CLAD. Methods: To predict CLAD, we investigated the clinicome of patients with LT; the exposome through assessment of airway microbiota in bronchoalveolar lavage cells and air pollution studies; the immunome with works on activation of dendritic cells, the role of T cells to promote the secretion of matrix metalloproteinase-9, and subpopulations of T and B cells; genome polymorphisms; blood transcriptome; plasma proteome studies and assessment of MSK1 expression. Results: Clinicome: the best multivariate logistic regression analysis model for early-onset CLAD in 422 LT eligible patients generated a ROC curve with an area under the curve of 0.77. Exposome: chronic exposure to air pollutants appears deleterious on lung function levels in LT recipients (LTRs), might be modified by macrolides, and increases mortality. Our findings established a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Immunome: a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and associated with a higher level of interleukin 17A; Immune cells support airway remodeling through the production of plasma MMP-9 levels, a potential predictive biomarker of CLAD. Blood CD9-expressing B cells appear to favor the maintenance of long-term stable graft function and are a potential new predictive biomarker of BOS-free survival. An early increase of blood CD4 + CD57 + ILT2+ T cells after LT may be associated with CLAD onset. Genome: Donor Club cell secretory protein G38A polymorphism is associated with a decreased risk of severe primary graft dysfunction after LT. Transcriptome: blood POU class 2 associating factor 1, T-cell leukemia/lymphoma domain, and B cell lymphocytes, were validated as predictive biomarkers of CLAD phenotypes more than 6 months before diagnosis. Proteome: blood A2MG is an independent predictor of CLAD, and MSK1 kinase overexpression is either a marker or a potential therapeutic target in CLAD. Conclusion: Systems prediction of Chronic Lung Allograft Dysfunction generated multiple fingerprints that enabled the development of predictors of CLAD. These results open the way to the integration of these fingerprints into a predictive handprint.

3.
Transplantation ; 105(6): 1212-1224, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33560725

RESUMEN

BACKGROUND: Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS: MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS: MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS: These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.


Asunto(s)
Bronquiolitis Obliterante/enzimología , Fibroblastos/enzimología , Trasplante de Pulmón/efectos adversos , Pulmón/enzimología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Adolescente , Adulto , Anciano , Animales , Bronquiolitis Obliterante/tratamiento farmacológico , Bronquiolitis Obliterante/etiología , Bronquiolitis Obliterante/patología , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Francia , Humanos , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/cirugía , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Repitelización , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Regulación hacia Arriba , Adulto Joven
4.
Am J Transplant ; 19(11): 3162-3175, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31305014

RESUMEN

Bronchiolitis obliterans syndrome is the main limitation for long-term survival after lung transplantation. Some specific B cell populations are associated with long-term graft acceptance. We aimed to monitor the B cell profile during early development of bronchiolitis obliterans syndrome after lung transplantation. The B cell longitudinal profile was analyzed in peripheral blood mononuclear cells from patients with bronchiolitis obliterans syndrome and patients who remained stable over 3 years of follow-up. CD24hi CD38hi transitional B cells were increased in stable patients only, and reached a peak 24 months after transplantation, whereas they remained unchanged in patients who developed a bronchiolitis obliterans syndrome. These CD24hi CD38hi transitional B cells specifically secrete IL-10 and express CD9. Thus, patients with a total CD9+ B cell frequency below 6.6% displayed significantly higher incidence of bronchiolitis obliterans syndrome (AUC = 0.836, PPV = 0.75, NPV = 1). These data are the first to associate IL-10-secreting CD24hi CD38hi transitional B cells expressing CD9 with better allograft outcome in lung transplant recipients. CD9-expressing B cells appear as a contributor to a favorable environment essential for the maintenance of long-term stable graft function and as a new predictive biomarker of bronchiolitis obliterans syndrome-free survival.


Asunto(s)
Linfocitos B/metabolismo , Biomarcadores/metabolismo , Bronquiolitis Obliterante/diagnóstico , Rechazo de Injerto/diagnóstico , Trasplante de Pulmón/efectos adversos , Complicaciones Posoperatorias/diagnóstico , Tetraspanina 29/metabolismo , Adolescente , Adulto , Anciano , Bronquiolitis Obliterante/etiología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Rechazo de Injerto/etiología , Supervivencia de Injerto , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Pronóstico , Factores de Riesgo , Tasa de Supervivencia , Síndrome , Trasplante Homólogo , Adulto Joven
5.
J Heart Lung Transplant ; 37(6): 770-781, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29571601

RESUMEN

BACKGROUND: Chronic bronchiolitis obliterans syndrome (BOS) remains a major limitation for long-term survival after lung transplantation. The immune mechanisms involved and predictive biomarkers have yet to be identified. The purpose of this study was to determine whether peripheral blood T-lymphocyte profile could predict BOS in lung transplant recipients. METHODS: An in-depth profiling of CD4+ and CD8+ T cells was prospectively performed on blood cells from stable (STA) and BOS patients with a longitudinal follow-up. Samples were analyzed at 1 and 6 months after transplantation, at the time of BOS diagnosis, and at an intermediate time-point at 6 to 12 months before BOS diagnosis. RESULTS: Although no significant difference was found for T-cell compartments at BOS diagnosis or several months beforehand, we identified an increase in the CD4+CD25hiFoxP3+ T-cell sub-population in BOS patients at 1 and 6 months after transplantation (3.39 ± 0.40% vs 1.67 ± 0.22% in STA, p < 0.001). A CD4+CD25hiFoxP3+ T-cell threshold of 2.4% discriminated BOS and stable patients at 1 month post-transplantation. This was validated on a second set of patients at 6 months post-transplantation. Patients with a proportion of CD4+CD25hiFoxP3+ T cells up to 2.4% in the 6 months after transplantation had a 2-fold higher risk of developing BOS. CONCLUSIONS: This study is the first to report an increased proportion of circulating CD4+CD25hiFoxP3+ T cells early post-transplantation in lung recipients who proceed to develop BOS within 3 years, which supports its use as a BOS predictive biomarker.


Asunto(s)
Bronquiolitis Obliterante/sangre , Trasplante de Pulmón , Complicaciones Posoperatorias/sangre , Linfocitos T , Adolescente , Adulto , Anciano , Linfocitos T CD4-Positivos , Femenino , Estudios de Seguimiento , Factores de Transcripción Forkhead , Humanos , Subunidad alfa del Receptor de Interleucina-2 , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Síndrome , Adulto Joven
6.
Kidney Int ; 93(5): 1154-1164, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29455908

RESUMEN

Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apirasa/metabolismo , Metabolismo Energético , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Memoria Inmunológica , Trasplante de Riñón , Linfocitos T Reguladores/enzimología , Tolerancia al Trasplante , Adenosina Difosfato/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Femenino , Rechazo de Injerto/enzimología , Rechazo de Injerto/inmunología , Supervivencia de Injerto/efectos de los fármacos , Humanos , Hidrólisis , Memoria Inmunológica/efectos de los fármacos , Inmunosupresores/uso terapéutico , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Tolerancia al Trasplante/efectos de los fármacos , Adulto Joven
7.
Front Immunol ; 9: 3034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622536

RESUMEN

CD9 was recently identified as a marker of murine IL-10-competent regulatory B cells. Functional impairments or defects in CD9+ IL-10-secreting regulatory B cells are associated with enhanced asthma-like inflammation and airway hyperresponsiveness. In mouse models, all asthma-related features can be abrogated by CD9+ B cell adoptive transfer. We aimed herein to decipher the profiles, features, and molecular mechanisms of the regulatory properties of CD9+ B cells in human and mouse. The profile of CD9+ B cells was analyzed using blood from severe asthmatic patients and normal and asthmatic mice by flow cytometry. The regulatory effects of mouse CD9+ B cells on effector T cell death, cell cycle arrest, apoptosis, and mitochondrial depolarization were determined using yellow dye, propidium iodide, Annexin V, and JC-1 staining. MAPK phosphorylation was analyzed by western blotting. Patients with severe asthma and asthmatic mice both harbored less CD19+CD9+ B cells, although these cells displayed no defect in their capacity to induce T cell apoptosis. Molecular mechanisms of regulation of CD9+ B cells characterized in mouse showed that they induced effector T cell cycle arrest in sub G0/G1, leading to apoptosis in an IL-10-dependent manner. This process occurred through MAPK phosphorylation and activation of both the intrinsic and extrinsic pathways. This study characterizes the molecular mechanisms underlying the regulation of CD9+ B cells to induce effector T cell apoptosis in mice and humans via IL-10 secretion. Defects in CD9+ B cells in blood from patients with severe asthma reveal new insights into the lack of regulation of inflammation in these patients.


Asunto(s)
Asma/inmunología , Linfocitos B Reguladores/inmunología , Interleucina-10/metabolismo , Subgrupos de Linfocitos T/inmunología , Adulto , Anciano , Animales , Apoptosis/inmunología , Asma/sangre , Asma/diagnóstico , Linfocitos B Reguladores/metabolismo , Comunicación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/inmunología , Humanos , Interleucina-10/inmunología , Pulmón , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Ratones , Persona de Mediana Edad , Dinámicas Mitocondriales/inmunología , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Tetraspanina 29/metabolismo
8.
Front Immunol ; 8: 1841, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375549

RESUMEN

Bronchiolitis obliterans syndrome (BOS), the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group), and 26 samples at or after BOS diagnosis (diagnosis group). An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group). We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1), T-cell leukemia/lymphoma protein 1A (TCL1A), and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01) and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...