Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39155640

RESUMEN

Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.


Asunto(s)
Hydra , Fototaxis , Animales , Hydra/fisiología , Fototaxis/fisiología , Conducta Animal/fisiología , Respuesta de Saciedad/fisiología
2.
Nat Nanotechnol ; 18(9): 1051-1059, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37430037

RESUMEN

Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)-molecules that perform mechanical work on the molecular scale-can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices.


Asunto(s)
Señalización del Calcio , Uniones Comunicantes , Animales , Señalización del Calcio/genética , Uniones Comunicantes/metabolismo , Contracción Muscular , Fosfatos de Inositol/metabolismo , Calcio/metabolismo
3.
ACS Sens ; 7(8): 2253-2261, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35938877

RESUMEN

Real-time in vivo detection of biomarkers, particularly nitric oxide (NO), is of utmost importance for critical healthcare monitoring, therapeutic dosing, and fundamental understanding of NO's role in regulating many physiological processes. However, detection of NO in a biological medium is challenging due to its short lifetime and low concentration. Here, we demonstrate for the first time that photonic microring resonators (MRRs) can provide real-time, direct, and in vivo detection of NO in a mouse wound model. The MRR encodes the NO concentration information into its transfer function in the form of a resonance wavelength shift. We show that these functionalized MRRs, fabricated using complementary metal oxide semiconductor (CMOS) compatible processes, can achieve sensitive detection of NO (sub-µM) with excellent specificity and no apparent performance degradation for more than 24 h of operation in biological medium. With alternative functionalizations, this compact lab-on-chip optical sensing platform could support real-time in vivo detection of myriad of biochemical species.


Asunto(s)
Técnicas Biosensibles , Silicio , Animales , Ratones , Óxido Nítrico , Óptica y Fotónica , Fotones
4.
Nat Mater ; 21(8): 951-958, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35761060

RESUMEN

Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.


Asunto(s)
Drosophila melanogaster , Neuronas , Animales , Canales Iónicos , Fenómenos Magnéticos , Neuronas/fisiología
5.
Angew Chem Int Ed Engl ; 58(42): 14995-14999, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31424601

RESUMEN

The regio- and stereoselective preparation of fully substituted and stereodefined silyl enol ethers of ketones and aldehydes through an allyl-Brook rearrangement is reported. This fast and efficient method proceeds from a mixture of E and Z isomers of easily accessible starting materials.

6.
Biophys J ; 116(3): 454-468, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30665695

RESUMEN

Magnetically sensitive ion channels would allow researchers to better study how specific brain cells affect behavior in freely moving animals; however, recent reports of "magnetogenetic" ion channels based on biogenic ferritin nanoparticles have been questioned because known biophysical mechanisms cannot explain experimental observations. Here, we reproduce a weak magnetically mediated calcium response in HEK cells expressing a previously published TRPV4-ferritin fusion protein. We find that this magnetic sensitivity is attenuated when we reduce the temperature sensitivity of the channel but not when we reduce the mechanical sensitivity of the channel, suggesting that the magnetic sensitivity of this channel is thermally mediated. As a potential mechanism for this thermally mediated magnetic response, we propose that changes in the magnetic entropy of the ferritin particle can generate heat via the magnetocaloric effect and consequently gate the associated temperature-sensitive ion channel. Unlike other forms of magnetic heating, the magnetocaloric mechanism can cool magnetic particles during demagnetization. To test this prediction, we constructed a magnetogenetic channel based on the cold-sensitive TRPM8 channel. Our observation of a magnetic response in cold-gated channels is consistent with the magnetocaloric hypothesis. Together, these new data and our proposed mechanism of action provide additional resources for understanding how ion channels could be activated by low-frequency magnetic fields.


Asunto(s)
Entropía , Activación del Canal Iónico , Campos Magnéticos , Canales Catiónicos TRPV/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusión/metabolismo
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 826-829, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440519

RESUMEN

Several research groups have developed head-mounted fluorescence microscopes as a modality for recording neural activity in freely behaving mice. The current designs have shown exciting results from in vivo imaging of the bright dynamics of genetically encoded calcium indicators (GECI). However, despite their potential, head-mounted microscopes are not in use with genetically encoded voltage indicators (GEVI) or bioluminescence indicators. Due to its ability to match the temporal resolution of neuron spiking, GEVIs offer great benefits to experiments designed to provide feedback after real-time detection of specific neural activity such as the less than 250ms replay events that can occur in the hippocampus. Orthogonally, the emerging bioluminescence activity reporters have the potential to eliminate autofluorescence and photobleaching that can occur in fluorescence imaging. There are two important properties of the head-mounted microscope's image sensor affecting the ability to image GEVIs and bioluminescence indicators. First, the low signal to noise ratio (SNR) characteristics of GEVIs and bioluminescent indicators make signal detection difficult. Second, in order to take advantage of the GEVIs faster fluorescence kinetics, the image sensor must be capable of matching frame rates. Here, we present the design of a new imaging module for head-mounted microscopes incorporating the latest CMOS sensor technology aimed at increasing image sensor sensitivity and frame rates for use in real-time detection experiments. The design builds off an existing open-source project and can integrate into the existing data acquisition hardware and microscope housing.


Asunto(s)
Cabeza , Neuronas , Animales , Ratones , Microscopía Fluorescente
8.
Nature ; 548(7669): 567-572, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28858304

RESUMEN

Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Membrana Celular/química , Supervivencia Celular , Difusión , Células HEK293 , Humanos , Rayos Infrarrojos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Proteínas Motoras Moleculares/efectos de la radiación , Movimiento/efectos de la radiación , Células 3T3 NIH , Nanotecnología , Necrosis , Técnicas de Placa-Clamp , Fotones , Rotación , Rayos Ultravioleta
9.
PLoS One ; 12(8): e0183046, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817613

RESUMEN

The motor protein prestin is a member of the SLC26 family of anion antiporters and is essential to the electromotility of cochlear outer hair cells and for hearing. The only direct inhibitor of electromotility and the associated charge transfer is salicylate, possibly through direct interaction with an anion-binding site on prestin. In a screen to identify other inhibitors of prestin activity, we explored the effect of the non-steroid anti-inflammatory drug diflunisal, which is a derivative of salicylate. We recorded prestin activity by whole-cell patch clamping HEK cells transiently expressing prestin and mouse outer hair cells. We monitored the impact of diflunisal on the prestin-dependent non-linear capacitance and electromotility. We found that diflunisal triggers two prestin-associated effects: a chloride independent increase in the surface area and the specific capacitance of the membrane, and a chloride dependent inhibition of the charge transfer and the electromotility in outer hair cells. We conclude that diflunisal affects the cell membrane organization and inhibits prestin-associated charge transfer and electromotility at physiological chloride concentrations. The inhibitory effects on hair cell function are noteworthy given the proposed use of diflunisal to treat neurodegenerative diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Cloruros/metabolismo , Diflunisal/farmacología , Proteínas Motoras Moleculares/antagonistas & inhibidores , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células Cultivadas , Células HEK293 , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Humanos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas Motoras Moleculares/metabolismo
10.
J Org Chem ; 82(3): 1726-1742, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28059511

RESUMEN

4-Aminopyridines are valuable scaffolds for the chemical industry in general, from life sciences to catalysis. We report herein a collection of structurally diverse polycyclic fused and spiro-4-aminopyridines that are prepared in only three steps from commercially available pyrimidines. The key step of this short sequence is a [4 + 2]/retro-[4 + 2] cycloaddition between a pyrimidine and an ynamide, which constitutes the first examples of ynamides behaving as electron-rich dienophiles in [4 + 2] cycloaddition reactions. In addition, running the ihDA/rDA reaction in continuous mode in superheated toluene, to overcome the limited scalability of MW reactions, results in a notable production increase compared to batch mode. Finally, density functional theory investigations shed light on the energetic and geometric requirements of the different steps of the ihDA/rDA sequence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA