Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mol Syst Biol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580884

RESUMEN

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.

2.
Genes Dev ; 38(5-6): 233-252, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503515

RESUMEN

The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.


Asunto(s)
Daño del ADN , Inestabilidad Genómica , Proteínas de Ciclo Celular/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Inestabilidad Genómica/genética
3.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
4.
Nature ; 618(7967): 909-910, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316590
5.
EMBO Rep ; 24(8): e56834, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306046

RESUMEN

53BP1 is a chromatin-binding protein that promotes DNA double-strand break repair through the recruitment of downstream effectors including RIF1, shieldin, and CST. The structural basis of the protein-protein interactions within the 53BP1-RIF1-shieldin-CST pathway that are essential for its DNA repair activity is largely unknown. Here, we used AlphaFold2-Multimer (AF2) to predict all possible pairwise combinations of proteins within this pathway and provide structural models of seven previously characterized interactions. This analysis also predicted an entirely novel binding interface between the HEAT-repeat domain of RIF1 and the eIF4E-like domain of SHLD3. Extensive interrogation of this interface through both in vitro pulldown analysis and cellular assays supports the AF2-predicted model and demonstrates that RIF1-SHLD3 binding is essential for shieldin recruitment to sites of DNA damage, and for its role in antibody class switch recombination and PARP inhibitor sensitivity. Direct physical interaction between RIF1 and SHLD3 is therefore essential for 53BP1-RIF1-shieldin-CST pathway activity.


Asunto(s)
Proteínas de Unión al ADN , Furilfuramida , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Unión al ADN/metabolismo , Reparación del ADN , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
6.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37188479

RESUMEN

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


Asunto(s)
Reparación del ADN , Osteocondrodisplasias , Humanos , Mutación/genética , Quinasa 1 Relacionada con NIMA/genética , Osteocondrodisplasias/genética , Fosforilación
8.
Nat Commun ; 13(1): 4143, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842428

RESUMEN

The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.


Asunto(s)
Autoantígenos , Proteínas Portadoras , Reparación del ADN , Proteínas de Unión al ADN , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Proteínas Nucleares , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758262

RESUMEN

Centrosomes act as the main microtubule organizing center (MTOC) in metazoans. Centrosome number is tightly regulated by limiting centriole duplication to a single round per cell cycle. This control is achieved by multiple mechanisms, including the regulation of the protein kinase PLK4, the most upstream facilitator of centriole duplication. Altered centrosome numbers in mouse and human cells cause p53-dependent growth arrest through poorly defined mechanisms. Recent work has shown that the E3 ligase TRIM37 is required for cell cycle arrest in acentrosomal cells. To gain additional insights into this process, we undertook a series of genome-wide CRISPR/Cas9 screens to identify factors important for growth arrest triggered by treatment with centrinone B, a selective PLK4 inhibitor. We found that TRIM37 is a key mediator of growth arrest after partial or full PLK4 inhibition. Interestingly, PLK4 cellular mobility decreased in a dose-dependent manner after centrinone B treatment. In contrast to recent work, we found that growth arrest after PLK4 inhibition correlated better with PLK4 activity than with mitotic length or centrosome number. These data provide insights into the global response to changes in centrosome number and PLK4 activity and extend the role for TRIM37 in regulating the abundance, localization, and function of centrosome proteins.


Asunto(s)
Centriolos , Centrosoma , Proteínas Serina-Treonina Quinasas , Pirimidinas , Sulfonas , Animales , Proteínas de Ciclo Celular/metabolismo , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centrosoma/metabolismo , Ratones , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Huso Acromático/metabolismo , Sulfonas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
10.
Nature ; 604(7907): 749-756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444283

RESUMEN

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Asunto(s)
Ciclina E , Proteínas de la Membrana , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteína Quinasa CDC2 , Ciclina E/genética , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Neoplasias/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Mutaciones Letales Sintéticas
11.
Mol Cell ; 82(7): 1359-1371.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35216668

RESUMEN

The chromatin-binding protein 53BP1 promotes DNA repair by orchestrating the recruitment of downstream effectors including PTIP, RIF1, and shieldin to DNA double-strand break sites. While we know how PTIP recognizes 53BP1, the molecular details of RIF1 recruitment to DNA-damage sites remains undefined. Here, we report that RIF1 is a phosphopeptide-binding protein that directly interacts with three phosphorylated 53BP1 epitopes. The RIF1-binding sites on 53BP1 share an essential LxL motif followed by two closely apposed phosphorylated residues. Simultaneous mutation of these sites on 53BP1 abrogates RIF1 accumulation into ionizing-radiation-induced foci, but surprisingly, only fully compromises 53BP1-dependent DNA repair when an alternative mode of shieldin recruitment to DNA-damage sites is also disabled. Intriguingly, this alternative mode of recruitment still depends on RIF1 but does not require its interaction with 53BP1. RIF1 therefore employs phosphopeptide recognition to promote DNA repair but also modifies shieldin action independently of 53BP1 binding.


Asunto(s)
Fosfopéptidos , Proteínas de Unión a Telómeros , Proteína BRCA1/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Fosfopéptidos/genética , Fosfopéptidos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
Nature ; 600(7888): 324-328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819670

RESUMEN

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Asunto(s)
Linfocitos B , ADN Glicosilasas , Reparación de la Incompatibilidad de ADN , Cambio de Clase de Inmunoglobulina , Proteínas de la Membrana , Mutación , Proteínas de Neoplasias , Hipermutación Somática de Inmunoglobulina , Animales , Femenino , Humanos , Ratones , Linfocitos B/metabolismo , Sistemas CRISPR-Cas , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , Epistasis Genética , Células HEK293 , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutación Somática de Inmunoglobulina/genética
13.
EMBO Rep ; 22(12): e53679, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34726323

RESUMEN

The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin-dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80- and RING-dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding-deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80-BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.


Asunto(s)
Proteínas Nucleares , Ubiquitina , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Nat Commun ; 12(1): 4496, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301934

RESUMEN

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Leiomiosarcoma/genética , Músculo Liso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Evolución Clonal , Estudios de Cohortes , Femenino , Humanos , Leiomiosarcoma/clasificación , Leiomiosarcoma/diagnóstico , Masculino , Persona de Mediana Edad , Músculo Liso/patología , Mutación , RNA-Seq/métodos , Análisis de Supervivencia
15.
Cancer Discov ; 11(7): 1626-1635, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33795234

RESUMEN

Synthetic lethality (SL) provides a conceptual framework for tackling targets that are not classically "druggable," including loss-of-function mutations in tumor suppressor genes required for carcinogenesis. Recent technological advances have led to an inflection point in our understanding of genetic interaction networks and ability to identify a wide array of novel SL drug targets. Here, we review concepts and lessons emerging from first-generation trials aimed at testing SL drugs, discuss how the nature of the targeted lesion can influence therapeutic outcomes, and highlight the need to develop clinical biomarkers distinct from those based on the paradigms developed to target activated oncogenes. SIGNIFICANCE: SL offers an approach for the targeting of loss of function of tumor suppressor and DNA repair genes, as well as of amplification and/or overexpression of genes that cannot be targeted directly. A next generation of tumor-specific alterations targetable through SL has emerged from high-throughput CRISPR technology, heralding not only new opportunities for drug development, but also important challenges in the development of optimal predictive biomarkers.


Asunto(s)
Neoplasias/tratamiento farmacológico , Mutaciones Letales Sintéticas , Desarrollo de Medicamentos/tendencias , Genes Supresores de Tumor , Humanos , Terapia Molecular Dirigida , Neoplasias/genética
16.
STAR Protoc ; 2(1): 100321, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33598657

RESUMEN

CRISPR-based genetic screens revolutionized our ability to genetically probe cell biology. We present a protocol to conduct genome-scale chemogenomic dropout CRISPR screens in the human RPE1-hTERT p53-/- cell line. We use the TKOv3 library, which contains 70,948 sgRNAs targeting 18,053 genes. Here, we describe how to set up the screen, the reagents required, and how to sequence and analyze the results. This protocol can be customized for other libraries, cell lines, and sequencing instruments. For complete details on the use and execution of this protocol, please refer to Olivieri et al. (2020).


Asunto(s)
Sistemas CRISPR-Cas , Biblioteca de Genes , Genoma Humano , Línea Celular , Humanos
17.
Nat Cancer ; 2(12): 1357-1371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121901

RESUMEN

BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Proteínas Portadoras/genética , Inestabilidad Cromosómica , ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga , Humanos , Proteínas Nucleares/genética
18.
CJC Open ; 3(12): 1509-1512, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34993463

RESUMEN

Differentiating between sarcoidosis and giant cell myocarditis (GCM) based on clinical presentation is difficult. We present the case of a 57-year-old woman who was initially diagnosed with GCM based on endomyocardial biopsy. The patient was refractory to standard management for GCM and went on to develop bidirectional ventricular tachycardia, a finding suggestive of sarcoidosis. Unfortunately, the patient eventually needed cardiac transplantation. The explanted heart demonstrated cardiac sarcoidosis. Bidirectional ventricular tachycardia has not been demonstrated in GCM, and its presence may help in distinguishing between GCM and cardiac sarcoidosis.


La distinction entre la sarcoïdose et la myocardite à cellules géantes (MCG) fondée sur le tableau clinique est difficile. Nous présentons le cas d'une femme de 57 ans qui avait initialement reçu un diagnostic de MCG à la suite de la biopsie endomyocardique. Comme la MCG diagnostiquée chez la patiente était réfractaire à la prise en charge thérapeutique habituelle, elle a continué à souffrir de tachycardie ventriculaire bidirectionnelle, un signe évocateur de sarcoïdose. Malheureusement, la patiente a finalement eu besoin d'une transplantation cardiaque. Le cœur explanté a démontré une sarcoïdose cardiaque. Bien que la tachycardie ventriculaire bidirectionnelle n'ait pas été démontrée lors de MCG, sa présence peut aider à distinguer la MCG de la sarcoïdose cardiaque.

19.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277478

RESUMEN

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Asunto(s)
Proteínas Arqueales/química , Methanocaldococcus/metabolismo , Complejos Multiproteicos/química , ARN de Transferencia/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Methanocaldococcus/genética , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo
20.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32778845

RESUMEN

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Talidomida , Ubiquitina , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Terapia Molecular Dirigida , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Relación Estructura-Actividad , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...