Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14715, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926482

RESUMEN

Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90ß, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90ß or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90ß) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.


Asunto(s)
Analgésicos Opioides , Proteínas HSP90 de Choque Térmico , Morfina , Médula Espinal , Animales , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Ratones , Analgésicos Opioides/farmacología , Masculino , Femenino , Morfina/farmacología , Isoformas de Proteínas/metabolismo , Tolerancia a Medicamentos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Modelos Animales de Enfermedad , Inyecciones Espinales
2.
Sci Signal ; 13(630)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371496

RESUMEN

Morphine and other opioids are commonly used to treat pain despite their numerous adverse side effects. Modulating µ-opioid receptor (MOR) signaling is one way to potentially improve opioid therapy. In mice, the chaperone protein Hsp90 mediates MOR signaling within the brain. Here, we found that inhibiting Hsp90 specifically in the spinal cord enhanced the antinociceptive effects of morphine in mice. Intrathecal, but not systemic, administration of the Hsp90 inhibitors 17-AAG or KU-32 amplified the effects of morphine in suppressing sensitivity to both thermal and mechanical stimuli in mice. Hsp90 inhibition enabled opioid-induced phosphorylation of the kinase ERK and increased abundance of the kinase RSK in the dorsal horns of the spinal cord, which are heavily populated with primary afferent sensory neurons. The additive effects of Hsp90 inhibition were abolished upon intrathecal inhibition of ERK, RSK, or protein synthesis. This mechanism downstream of MOR, localized to the spinal cord and repressed by Hsp90, may potentially be used to enhance the efficacy and presumably decrease the side effects of opioid therapy.


Asunto(s)
Analgésicos/farmacología , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Morfina/farmacología , Novobiocina/análogos & derivados , Receptores Opioides mu/metabolismo , Columna Vertebral/metabolismo , Animales , Benzoquinonas/agonistas , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Lactamas Macrocíclicas/agonistas , Masculino , Ratones , Morfina/agonistas , Novobiocina/agonistas , Novobiocina/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Columna Vertebral/patología
3.
Pain ; 161(10): 2353-2363, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32427747

RESUMEN

The opioid epidemic has plagued the United States with high levels of abuse and poor quality of life for chronic pain patients requiring continuous use of opioids. New drug discovery efforts have been implemented to mitigate this epidemic; however, new medications are still limited by low efficacy and/or high side effect and abuse potential. Intermittent fasting (IF) has recently been shown to improve a variety of pathological states, including stroke and neuroinflammation. Numerous animal and human studies have shown the benefits of IF in these disease states, but not in pain and opioid treatment. We thus subjected male and female CD-1 mice to 18-hour fasting intervals followed by 6-hour feed periods with standard chow for 1 week. Mice that underwent this diet displayed an enhanced antinociceptive response to morphine both in efficacy and duration using thermal tail-flick and postoperative paw incision pain models. While showing enhanced antinociception, IF mice also demonstrated no morphine reward and reduced tolerance and constipation. Seeking a mechanism for these improvements, we found that the mu-opioid receptor showed enhanced efficacy and reduced tolerance in the spinal cord and periaqueductal gray, respectively, from IF mice using a S-GTPγS coupling assay. These improvements in receptor function were not due to changes in mu-opioid receptor protein expression. These data suggest that a daily IF diet may improve the therapeutic index of acute and chronic opioid therapies for pain patients in the clinic, providing a novel tool to improve patient therapy and reduce potential abuse.


Asunto(s)
Ayuno , Analgésicos Opioides/uso terapéutico , Animales , Estreñimiento , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Morfina/uso terapéutico , Dimensión del Dolor , Calidad de Vida , Receptores Opioides mu , Recompensa
4.
Front Mol Neurosci ; 12: 294, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849607

RESUMEN

Opioid activation of the mu opioid receptor (MOR) promotes signaling cascades that evoke both analgesic responses to pain and side effects like addiction and dependence. Manipulation of these cascades, such as by biased agonism, has great promise to improve opioid therapy. However, the signaling cascades of the MOR are in general poorly understood, providing few targets for drug development. In our earlier work, we identified Heat shock protein 90 (Hsp90) as a novel and crucial regulator of opioid anti-nociception in the brain by promoting ERK MAPK activation. In this study, we sought to identify the molecular isoforms and co-chaperones by which Hsp90 carried out this role, which could provide specific targets for future clinical intervention. We used novel selective small molecule inhibitors as well as CRISPR/Cas9 gene editing constructs delivered by the intracerebroventricular (icv) route to the brains of adult CD-1 mice to target Hsp90 isoforms (Hsp90α/ß, Grp94) and co-chaperones (p23, Cdc37, Aha1). We found that inhibition of the isoform Hsp90α fully blocked morphine anti-nociception in a model of post-surgical paw incision pain, while blocking ERK and JNK MAPK activation, suggesting Hsp90α as the main regulator of opioid response in the brain. We further found that inhibition of the co-chaperones p23 and Cdc37 blocked morphine anti-nociception, suggesting that these co-chaperones assist Hsp90α in promoting opioid anti-nociception. Lastly, we used cycloheximide treatment in the brain to demonstrate that rapid protein translation within 30 min of opioid treatment is required for Hsp90 regulation of opioid response. Together these studies provide insight into the molecular mechanisms by which Hsp90 promotes opioid anti-nociception. These findings thus both improve our basic science knowledge of MOR signal transduction and could provide future targets for clinical intervention to improve opioid therapy.

5.
PLoS One ; 14(6): e0217371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170174

RESUMEN

Most clinically used opioids are thought to induce analgesia through activation of the mu opioid receptor (MOR). However, disparities have been observed between the efficacy of opioids in activating the MOR in vitro and in inducing analgesia in vivo. In addition, some clinically used opioids do not produce cross-tolerance with each other, and desensitization produced in vitro does not match tolerance produced in vivo. These disparities suggest that some opioids could be acting through other targets in vivo, but this has not been comprehensively tested. We thus screened 9 clinically relevant opioids (buprenorphine, hydrocodone, hydromorphone, morphine, O-desmethyl-tramadol, oxycodone, oxymorphone, tapentadol, tramadol) against 9 pain-related receptor targets (MOR, delta opioid receptor [DOR], kappa opioid receptor [KOR], nociceptin receptor [NOP], cannabinoid receptor type 1 [CB1], sigma-1 receptor [σ1R], and the monoamine transporters [NET/SERT/DAT]) expressed in cells using radioligand binding and functional activity assays. We found several novel interactions, including monoamine transporter activation by buprenorphine and σ1R binding by hydrocodone and tapentadol. Tail flick anti-nociception experiments with CD-1 mice demonstrated that the monoamine transporter inhibitor duloxetine selectively promoted buprenorphine anti-nociception while producing no effects by itself or in combination with the most MOR-selective drug oxymorphone, providing evidence that these novel interactions could be relevant in vivo. Our findings provide a comprehensive picture of the receptor interaction profiles of clinically relevant opioids, which has not previously been performed. Our findings also suggest novel receptor interactions for future investigation that could explain some of the disparities observed between opioid performance in vitro and in vivo.


Asunto(s)
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/química , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/farmacología , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Ratones , Receptores Opioides/química , Receptores Opioides/genética , Receptores Opioides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA