Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 19: 439-447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33489011

RESUMEN

PURPOSE: The goal of this study was to characterize an acellular pertussis vaccine (Tdap) containing genetically modified pertussis toxin (gdPT) and TLR agonist adsorbed to AlOOH adjuvant. METHODS: Several analytical tools including nanoDSF, FTIR, and LD were used to examine the conformation of novel gdPT and the composition of AlOOH adjuvant formulations adsorbed to pertussis vaccine. RESULTS: DLS particle size results were 9.3 nm and 320 nm for gdPT. For pertussis toxoid (PT), the DLS particle size results were larger at ~440 nm. After adsorption to AlOOH, which was driven by the protein antigen, the size distribution ranged from 3.5 to 22 µm. Two thermal transitions were observed by DSC for gdPT at 70 °C and 102 °C. The main thermal transition was confirmed to be at 72 °C by nanoDSF. All three vaccine formulations showed one thermal transition: Tdap-AlOOH had a thermal transition of 74.6 °C, Tdap-E6020-AlOOH had a thermal transition at 74.2 °C, and Tdap-CpG-AlOOH had a thermal transition at 77.0 °C. Analysis of pertussis toxin (PTx) and gdPT was also performed by FTIR spectroscopy for the purpose of comparison. The second derivative of the FTIR spectra showed an additional feature for PTx at 1685 cm-1 compared to gdPT. The antigen's amide I and II regions were largely unchanged after adsorption to AlOOH adjuvant as shown by FTIR, suggesting that there were no significant changes in the secondary structure. CONCLUSION: gdPT conformation was successfully characterized using an array of analytical methods. All three Tdap formulations have similar thermal stability as shown by nanoDSF, similar size distribution as shown by LD, and similar overall secondary structure as shown by FTIR. In-line particle sizing and IR can be used as in-process characterization tools to monitor consistency of adsorbed vaccine and to confirm product identity.

2.
Comput Struct Biotechnol J ; 17: 14-20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30581540

RESUMEN

PURPOSE: The goal of this study is to set an empirical baseline to map the structure-function relation of the antigens from the commercialized vaccine products. METHODS: To study the structural changes of protein antigens after adsorption several analytical tools including DLS, FTIR, Fluorescence, LD, and SEM have been used. RESULTS: All antigens have shown wide range of hydrodynamic diameter from 7 nm to 182 nm. Upon adjuvantation, the size distribution has become narrow, ranging from 10 to 12 µm, and has been driven by the derived diameter of aluminum phosphate (AlPO4) adjuvant. Further to examine size and morphology of adsorbed antigens, SEM has been used. The SEM results have demonstrated that the AlPO4 adjuvant suspension and adsorbed proteins consist of submicron particles that form a continuous porous surface. Diphtheria Toxoid (DT), Tetanus Toxoid (TT), and chemically-modified Filamentous Haemagglutinin (FHA) have shown surface adsorption to AlPO4. Secondary structure alpha-helix and beta-sheet content of DT and TT has increased after adsorption to AlPO4 adjuvant as shown by FTIR, whereas no significant changes were noted for other protein antigens. The results from Intrinsic Fluorescence have shown a structural rearrangement in DT and TT, consistent with the FTIR results. Multivalent vaccine product identity has been determined by FTIR as unique fingerprint spectrum. CONCLUSION: The globular proteins such as DT and TT have shown changes in secondary structure upon adsorption to AlPO4, whereas fibrillar protein FHA has not been affected by adsorption. FTIR can be used as a lean technique to confirm product identity at different manufacturing sites.

3.
J Vis Exp ; (121)2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28287565

RESUMEN

Differential scanning calorimetry (DSC) is an analytical technique that measures the molar heat capacity of samples as a function of temperature. In the case of protein samples, DSC profiles provide information about thermal stability, and to some extent serves as a structural "fingerprint" that can be used to assess structural conformation. It is performed using a differential scanning calorimeter that measures the thermal transition temperature (melting temperature; Tm) and the energy required to disrupt the interactions stabilizing the tertiary structure (enthalpy; ∆H) of proteins. Comparisons are made between formulations as well as production lots, and differences in derived values indicate differences in thermal stability and structural conformation. Data illustrating the use of DSC in an industrial setting for stability studies as well as monitoring key manufacturing steps are provided as proof of the effectiveness of this protocol. In comparison to other methods for assessing the thermal stability of protein conformations, DSC is cost-effective, requires few sample preparation steps, and also provides a complete thermodynamic profile of the protein unfolding process.


Asunto(s)
Antígenos/análisis , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Proteínas/química , Conformación Proteica , Proteínas/inmunología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...