Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6698): eadi5199, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781369

RESUMEN

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.


Asunto(s)
Redes Reguladoras de Genes , Genómica , Sitios de Carácter Cuantitativo , Análisis de la Célula Individual , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Cromatina/metabolismo , Cromatina/genética , Comunicación Celular/genética , Encéfalo/metabolismo , Envejecimiento/genética , Trastornos Mentales/genética
2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38562822

RESUMEN

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.

3.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420896

RESUMEN

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
Biología Computacional , Genoma Humano , Humanos , Animales , Ratones , Anotación de Secuencia Molecular , Biología Computacional/métodos , Genoma Humano/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas
4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2950-2962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34283720

RESUMEN

Uncovering genotype-phenotype relationships is a fundamental challenge in genomics. Gene prioritization is an important step for this endeavor to make a short manageable list from a list of thousands of genes coming from high-throughput studies. Network propagation methods are promising and state of the art methods for gene prioritization based on the premise that functionally related genes tend to be close to each other in the biological networks. Recently, we introduced PhenoGeneRanker, a network-propagation algorithm for multiplex heterogeneous networks. PhenoGeneRanker allows multi-layer gene and phenotype networks. It also calculates empirical p values of gene and phenotype ranks using random stratified sampling of seeds of genes and phenotypes based on their connectivity degree in the network. In this study, we introduce the PhenoGeneRanker Bioconductor package and its application to multi-omics rat genome datasets to rank hypertension disease-related genes and strains. We showed that PhenoGeneRanker performed better to rank hypertension disease-related genes using multiplex gene networks than aggregated gene networks. We also showed that PhenoGeneRanker performed better to rank hypertension disease-related strains using multiplex phenotype network than single or aggregated phenotype networks. We performed a rigorous hyperparameter analysis and, finally showed that Gene Ontology (GO) enrichment of statistically significant top-ranked genes resulted in hypertension disease-related GO terms.


Asunto(s)
Algoritmos , Hipertensión , Animales , Redes Reguladoras de Genes/genética , Genómica/métodos , Fenotipo , Ratas
5.
Artículo en Inglés | MEDLINE | ID: mdl-34584774

RESUMEN

Complex diseases such as hypertension, cancer, and diabetes cause nearly 70% of the deaths in the U.S. and involve multiple genes and their interactions with environmental factors. Therefore, identification of genetic factors to understand and decrease the morbidity and mortality from complex diseases is an important and challenging task. With the generation of an unprecedented amount of multi-omics datasets, network-based methods have become popular to represent the multilayered complex molecular interactions. Particularly node embeddings, the low-dimensional representations of nodes in a network are utilized for gene function prediction. Integrated network analysis of multi-omics data alleviates the issues related to missing data and lack of context-specific datasets. Most of the node embedding methods, however, are unable to integrate multiple types of datasets from genes and phenotypes. To address this limitation, we developed a node embedding algorithm called Node Embeddings of Complex networks (NECo) that can utilize multilayered heterogeneous networks of genes and phenotypes. We evaluated the performance of NECo using genotypic and phenotypic datasets from rat (Rattus norvegicus) disease models to classify hypertension disease-related genes. Our method significantly outperformed the state-of-the-art node embedding methods, with AUC of 94.97% compared 85.98% in the second-best performer, and predicted genes not previously implicated in hypertension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...