Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762274

RESUMEN

Endotoxins or lipopolysaccharides (LPS), found in the outer membrane of Gram-negative bacterial cell walls, can stimulate the human innate immune system, leading to life-threatening symptoms. Therefore, regulatory limits for endotoxin content apply to injectable pharmaceuticals, and excess LPS must be removed before commercialization. The majority of available endotoxin removal systems are based on the non-specific adsorption of LPS to charged and/or hydrophobic surfaces. Albeit effective to remove endotoxins, the lack of specificity can result in the unwanted loss of essential proteins from the pharmaceutical formulation. In this work, we developed microparticles conjugated to anti-Lipid A antibodies for selective endotoxin removal. Anti-Lipid A particles were characterized using flow cytometry and microscopy techniques. These particles exhibited a depletion capacity > 6 ×103 endotoxin units/mg particles from water, as determined with two independent methods (Limulus Amebocyte Lysate test and nanoparticle tracking analysis). Additionally, we compared these particles with a non-specific endotoxin removal system in a series of formulations of increasing complexity: bovine serum albumin in water < insulin in buffer < birch pollen extracts. We demonstrated that the specific anti-Lipid A particles show a higher protein recovery without compromising their endotoxin removal capacity. Consequently, we believe that the specificity layer integrated by the anti-Lipid A antibody could be advantageous to enhance product yield.


Asunto(s)
Endotoxinas , Lipopolisacáridos , Humanos , Endotoxinas/química , Lipopolisacáridos/química , Composición de Medicamentos , Proteínas de la Membrana/química , Prueba de Limulus/métodos
3.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630186

RESUMEN

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Asunto(s)
Hipersensibilidad , Nanopartículas , Humanos , Animales , Ratones , Alérgenos/análisis , Alérgenos/química , Polen/efectos adversos , Polen/química , Antígenos de Plantas/análisis , Antígenos de Plantas/química , Células Presentadoras de Antígenos , Betula , Inmunoglobulina E/análisis
4.
Bioconjug Chem ; 33(8): 1505-1514, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35852911

RESUMEN

Sodium citrate-stabilized gold nanoparticles (AuNPs) are destabilized when dispersed in cell culture media (CCMs). This may promote their aggregation and subsequent sedimentation, or under the proper conditions, their interaction with dispersed proteins can lead to the formation of a NP-stabilizing protein corona. CCMs are ionic solutions that contain growth substances which are typically supplemented, in addition to serum, with different substances such as dyes, antioxidants, and antibiotics. In this study, the impact of phenol red, penicillin-streptomycin, l-glutamine, and ß-mercaptoethanol on the formation of the NP-protein corona in CCMs was investigated. Similar protein coronas were obtained except in the presence of antibiotics. Under these conditions, the protein corona took more time to be formed, and its density and composition were altered, as indicated by UV-vis spectroscopy, Z potential, dynamic light scattering, and liquid chromatography-mass spectrometry analyses. As a consequence of these modifications, a significantly different AuNP cellular uptake was measured, showing that NP uptake increased as did the NP aggregate formation. AuNP uptake studies performed in the presence of clathrin- and caveolin-mediated endocytosis inhibitors showed that neither clathrin receptors nor lipid rafts were significantly involved in the internalization mechanism. These results suggest that in these conditions, NP aggregation is the main mechanism responsible for their cellular uptake.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Antibacterianos , Técnicas de Cultivo de Célula , Citratos/química , Ácido Cítrico , Clatrina , Oro/química , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo
5.
Pharmaceutics ; 14(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631689

RESUMEN

Silica nanoparticles (SiNPs) are generally regarded as safe and may represent an attractive carrier platform for nanomedical applications when loaded with biopharmaceuticals. Surface functionalization by different chemistries may help to optimize protein loading and may further impact uptake into the targeted tissues or cells, however, it may also alter the immunologic profile of the carrier system. In order to circumvent side effects, novel carrier candidates need to be tested thoroughly, early in their development stage within the pharmaceutical innovation pipeline, for their potential to activate or modify the immune response. Previous studies have identified surface functionalization by different chemistries as providing a plethora of modifications for optimizing efficacy of biopharmaceutical (nano)carrier platforms while maintaining an acceptable safety profile. In this study, we synthesized SiNPs and chemically functionalized them to obtain different surface characteristics to allow their application as a carrier system for allergen-specific immunotherapy. In the present study, crude natural allergen extracts are used in combination with alum instead of well-defined active pharmaceutical ingredients (APIs), such as recombinant allergen, loaded onto (nano)carrier systems with immunologically inert and stable properties in suspension. This study was motivated by the hypothesis that comparing different charge states could allow tailoring of the binding capacity of the particulate carrier system, and hence the optimization of biopharmaceutical uptake while maintaining an acceptable safety profile, which was investigated by determining the maturation of human antigen-presenting cells (APCs). The functionalized nanoparticles were characterized for primary and hydrodynamic size, polydispersity index, zeta potential, endotoxin contamination. As potential candidates for allergen-specific immunotherapy, the differently functionalized SiNPs were non-covalently coupled with a highly purified, endotoxin-free recombinant preparation of the major birch pollen allergen Bet v 1 that functioned for further immunological testing. Binding efficiencies of allergen to SiNPs was controlled to determine uptake of API. For efficacy and safety assessment, we employed human monocyte-derived dendritic cells as model for APCs to detect possible differences in the particles' APC maturation potential. Functionalization of SiNP did not affect the viability of APCs, however, the amount of API physisorbed onto the nanocarrier system, which induced enhanced uptake, mainly by macropinocytosis. We found slight differences in the maturation state of APCs for the differently functionalized SiNP-API conjugates qualifying surface functionalization as an effective instrument for optimizing the immune response towards SiNPs. This study further suggests that surface-functionalized SiNPs could be a suitable, immunologically inert vehicle for the efficient delivery of biopharmaceutical products, as evidenced here for allergen-specific immunotherapy.

6.
Nutrients ; 14(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405985

RESUMEN

(1) Background: Posttranslational protein modifications have been demonstrated to change protein allergenicity. Previously, it was reported that pretreatment with highly nitrated food proteins induced a tolerogenic immune response in an experimental mouse model and in human immune cells. Here, we investigated a possible therapeutic effect of modified proteins and evaluated the safety of oral exposure to highly nitrated proteins in an experimental food allergy model. (2) Methods: BALB/c mice were orally sensitized towards ovalbumin (OVA) under gastric acid suppression. Thereafter, treatment via intragastric gavage with maximally nitrated OVA (nOVAmax) and OVA as a control was performed six times every 2 weeks. On the last day of experiments, all the treated mice were orally challenged with OVA. Systemic anaphylactic reaction was determined by measuring the core body temperature. Moreover, antibody levels, regulatory T cell numbers, cytokine levels and histology of antrum tissues were analyzed. (3) Results: After oral immunotherapy, OVA-specific IgE titers were decreased while IgG1 titers were significantly elevated in the mice receiving OVA. After oral challenge with OVA, nOVAmax-treated allergic animals showed no drop of the core body temperature, which was observed for OVA-allergic and OVA-treated allergic animals. Significantly fewer eosinophils and mast cells were found in the gastric mucosa of the allergic mice after nOVAmax treatment. (4) Conclusions: Oral immunotherapy with nOVAmax reduced allergic reactions upon allergen exposure and the number of allergen effector cells in the gastric mucosa. Thus, maximally nitrated allergens enabled an efficient and safe treatment for food allergy in our experimental model.


Asunto(s)
Hipersensibilidad a los Alimentos , Alérgenos , Animales , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos/terapia , Factores Inmunológicos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
7.
Nanoscale ; 13(48): 20508-20520, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34854455

RESUMEN

A detailed description of the changes that occur during the formation of protein corona represents a fundamental question in nanoscience, given that it not only impacts the behaviour of nanoparticles but also affects the bound proteins. Relevant questions include whether proteins selectively bind particles, whether a specific orientation is preferred for binding, and whether particle binding leads to a modulation of their 3D fold. For allergens, it is important to answer these questions given that all these effects can modify the allergenic response of atopic individuals. These potential impacts on the bound allergen are closely related to the specific properties of the involved nanoparticles. One important property influencing the formation of protein corona is the nanotopography of the particles. Herein, we studied the effect of nanoparticle porosity on allergen binding using mesoporous and non-porous SiO2 NPs. We investigated (i) the selectivity of allergen binding from a mixture such as crude pollen extract, (ii) whether allergen binding results in a preferred orientation, (iii) the influence of binding on the conformation of the allergen, and (iv) how the binding affects the allergenic response. Nanotopography was found to play a major role in the formation of protein corona, impacting the physicochemical and biological properties of the NP-bound allergen. The porosity of the surface of the SiO2 nanoparticles resulted in a higher binding capacity with pronounced selectivity for (preferentially) binding the major birch pollen allergen Bet v 1. Furthermore, the binding of Bet v 1 to the mesoporous rather than the non-porous SiO2 nanoparticles influenced the 3D fold of the protein, resulting in at least partial unfolding. Consequently, this conformational change influenced the allergenic response, as observed by mediator release assays employing the sera of patients and immune effector cells. For an in-depth understanding of the bio-nano interactions, the properties of the particles need to be considered not only regarding the identity and morphology of the material, but also their nanotopography, given that porosity may greatly influence the structure, and hence the biological behaviour of the bound proteins. Thus, thorough structural investigations upon the formation of protein corona are important when considering immunological outcomes, as particle binding can influence the allergenic response elicited by the bound allergen.


Asunto(s)
Alérgenos , Dióxido de Silicio , Antígenos de Plantas , Humanos , Inmunoglobulina E , Polen
8.
Front Immunol ; 12: 751683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804037

RESUMEN

Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; ß-glucan and the ß-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, ß-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.


Asunto(s)
Candida albicans , Oro/administración & dosificación , Helicobacter pylori , Memoria Inmunológica/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Monocitos/efectos de los fármacos , Staphylococcus aureus , beta-Glucanos/farmacología , Células Cultivadas , Citocinas/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Monocitos/inmunología , Monocitos/microbiología
9.
Biomedicines ; 9(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34680531

RESUMEN

The incidence of severe COVID-19 in children is low, and underlying mechanisms for lower SARS-CoV-2 susceptibility and self-limiting disease severity are poorly understood. Severe clinical manifestations in adults require SARS-CoV-2 inoculation in the lower respiratory tract, establishing a pulmonary disease phase. This may be either accomplished by direct inoculation of the thoracic region upon exposure to virion-laden aerosols, or by infection of the upper respiratory system and aspiration of virion-laden aerosols originating right there into the lower respiratory tract. The particularities of epithelial barriers as the anatomical site of first viral deposition specifically determine the initial characteristics of an innate immune response, emerging respiratory tissue damage and dysfunctionality, and hence, severity of clinical symptoms. We, thus, investigated by in silico modeling whether the combined effect of juvenile lung morphometry, children's ventilatory pattern and the peculiarities of the virion-laden aerosols' properties, render children more resilient to aerosol deposition in the lower respiratory tract. Our study presents evidence for major age-dependent differences of the regional virion-laden aerosol deposition. We identified deposition hotspots in the alveolar-interstitial region of the young adult. Our data reveal that children are void of corresponding hotspots. The inoculum quantum in the alveolar-interstitial region hotspots is found to be considerably related to age. Our results suggest that children are intrinsically protected against SARS-CoV-2 inoculation in the lower respiratory tract, which may help to explain the lower risk of severe clinical manifestations associated with a pulmonary phase.

10.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639235

RESUMEN

Nanomaterials have found extensive interest in the development of novel vaccines, as adjuvants and/or carriers in vaccination platforms. Conjugation of protein antigens at the particle surface by non-covalent adsorption is the most widely used approach in licensed particulate vaccines. Hence, it is essential to understand proteins' structural integrity at the material interface in order to develop safe-by-design nanovaccines. In this study, we utilized two model proteins, the wild-type allergen Bet v 1 and its hypoallergenic fold variant (BM4), to compare SiO2 nanoparticles with Alhydrogel® as particulate systems. A set of biophysical and functional assays including circular dichroism spectroscopy and proteolytic degradation was used to examine the antigens' structural integrity at the material interface. Conjugation of both biomolecules to the particulate systems decreased their proteolytic stability. However, we observed qualitative and quantitative differences in antigen processing concomitant with differences in their fold stability. These changes further led to an alteration in IgE epitope recognition. Here, we propose a toolbox of biophysical and functional in vitro assays for the suitability assessment of nanomaterials in the early stages of vaccine development. These tools will aid in safe-by-design innovations and allow fine-tuning the properties of nanoparticle candidates to shape a specific immune response.


Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Epítopos/inmunología , Activación de Linfocitos/inmunología , Nanopartículas/química , Dióxido de Silicio/química , Vacunas/inmunología , Alérgenos/química , Humanos , Hidrogeles , Inmunoglobulina E/inmunología , Hipersensibilidad Respiratoria/inmunología , Linfocitos T/inmunología
11.
J Pers Med ; 11(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069409

RESUMEN

COVID-19, predominantly a mild disease, is associated with more severe clinical manifestation upon pulmonary involvement. Virion-laden aerosols and droplets target different anatomical sites for deposition. Compared to droplets, aerosols more readily advance into the peripheral lung. We performed in silico modeling to confirm the secondary pulmonary lobules as the primary site of disease initiation. By taking different anatomical aerosol origins into consideration and reflecting aerosols from exhalation maneuvers breathing and vocalization, the physicochemical properties of generated respiratory aerosol particles were defined upon conversion to droplet nuclei by evaporation at ambient air. To provide detailed, spatially-resolved information on particle deposition in the thoracic region of the lung, a top-down refinement approach was employed. Our study presents evidence for hot spots of aerosol deposition in lung generations beyond the terminal bronchiole, with a maximum in the secondary pulmonary lobules and a high preference to the lower lobes of both lungs. In vivo, initial chest CT anomalies, the ground glass opacities, resulting from partial alveolar filling and interstitial thickening in the secondary pulmonary lobules, are likewise localized in these lung generations, with the highest frequency in both lower lobes and in the early stage of disease. Hence, our results suggest a disease initiation right there upon inhalation of virion-laden respiratory aerosols, linking the aerosol transmission route to pathogenesis associated with higher disease burden and identifying aerosol transmission as a new independent risk factor for developing a pulmonary phase with a severe outcome.

12.
Nanoscale ; 13(16): 7648-7666, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33928963

RESUMEN

Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.


Asunto(s)
Oro , Nanopartículas del Metal , Células Dendríticas , Humanos , Lipopolisacáridos , Nanopartículas del Metal/toxicidad , Fenotipo
13.
NanoImpact ; 23: 100337, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35559838

RESUMEN

The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe innovation in nanotechnologies. The proposed entity, referred to as "the Centre", will establish a 'one-stop shop' for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability.


Asunto(s)
Nanoestructuras , Nanotecnología , Industrias , Medición de Riesgo
14.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353206

RESUMEN

The innate immune system evolved to detect and react against potential dangers such as bacteria, viruses, and environmental particles. The advent of modern technology has exposed innate immune cells, such as monocytes, macrophages, and dendritic cells, to a relatively novel type of particulate matter, i.e., engineered nanoparticles. Nanoparticles are not inherently pathogenic, and yet cases have been described in which specific nanoparticle types can either induce innate/inflammatory responses or modulate the activity of activated innate cells. Many of these studies rely upon activation by agonists of toll-like receptors, such as lipopolysaccharide or peptidoglycan, instead of the more realistic stimulation by whole live organisms. In this review we examine and discuss the effects of nanoparticles on innate immune cells activated by live bacteria. We focus in particular on how nanoparticles may interfere with bacterial processes in the context of innate activation, and confine our scope to the effects due to particles themselves, rather than to molecules adsorbed on the particle surface. Finally, we examine the long-lasting consequences of coexposure to nanoparticles and bacteria, in terms of potential microbiome alterations and innate immune memory, and address nanoparticle-based vaccine strategies against bacterial infection.


Asunto(s)
Bacterias/patogenicidad , Inmunidad Innata/inmunología , Nanopartículas/administración & dosificación , Animales , Humanos , Inmunidad Innata/efectos de los fármacos , Nanopartículas/química
15.
Front Immunol ; 11: 1334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714326

RESUMEN

Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad/etiología , Hipersensibilidad/inmunología , Material Particulado/efectos adversos , Material Particulado/inmunología , Humanos
16.
Vaccines (Basel) ; 8(2)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443671

RESUMEN

The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.

17.
Small ; 16(21): e2000598, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32363795

RESUMEN

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Asunto(s)
Inmunidad Innata , Nanoestructuras , Medición de Riesgo , Inmunidad Adaptativa , Animales , Inmunidad Innata/efectos de los fármacos , Nanoestructuras/toxicidad , Medición de Riesgo/métodos
18.
Small ; 16(21): e1907483, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239645

RESUMEN

The immune system is professional in recognizing and responding to non-self, including nanomaterials. Immune responses by professional and nonprofessional immune cells are thus nearly inevitable upon exposure of cells and organisms to such materials. The state of research into taking the immune system into account in nanosafety studies is reviewed and three aspects in which further improvements are desirable are identified: 1) Due to technical limitations, more stringent testing for endotoxin contamination should be made. 2) Since under overdose conditions immunity shows unphysiological responses, all doses used should be justified by being equivalent to tissue-delivered doses. 3) When markers of acute inflammation or cell stress are observed, functional assays are necessary to distinguish between homeostatic fluctuation and genuine defensive or tolerogenic responses. Since immune activation can also indicate that the immune system considers a stimulus to be harmless and induces tolerance, activation markers by themselves do not necessarily imply a danger to the body. Guidelines such as these are necessary to approach the point where specific nanomaterials are classified as safe based on reliable testing strategies.


Asunto(s)
Inmunidad , Nanoestructuras , Alergia e Inmunología , Humanos , Inmunidad/efectos de los fármacos , Nanoestructuras/clasificación , Nanoestructuras/normas , Nanoestructuras/toxicidad , Seguridad
19.
Chem Res Toxicol ; 33(5): 1215-1225, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32088960

RESUMEN

The number of consumer products containing nanoparticles (NPs) experienced a rapid increase during the past decades. However, most studies of nanosafety have been conducted using only pure NPs produced in the laboratory, while the interactions with other ingredients in consumer products have rarely been considered so far. In the present study, we investigated such interactions-with a special focus on modern lifestyle products (MLPs) used by adolescents. An extensive survey was undertaken at different high schools all over Austria to identify MLPs that either contain NPs or that could come easily in contact with NPs from other consumer products (such as TiO2 from sunscreens). Based on the results from a survey among secondary schools students, we focused on ingredients from Henna tattoos (2-hydroxy-1,4-naphtoquinone, HNQ, and p-phenylenediamine, PPD), fragrances (butylphenyl methylpropional, known as Lilial), cosmetics and skin-care products (four different parabens). As a cellular model, we decided to use neonatal normal human dermal fibroblasts (nNHDF), since skin contact is the main route of exposure for these compounds. TiO2 NPs interacted with these compounds as evidenced by alterations in their hydrodynamic diameter observed by nanoparticle tracking analysis. Combinations of TiO2 NPs with the different MLP components did not show altered cytotoxicity profiles compared to MLP components without TiO2 NPs. Nevertheless, altered cellular glutathione contents were detected after incubation of the cells with Lilial. This effect was independent of the presence of TiO2 NPs. Testing mixtures of NPs with other compounds from consumer products is an important approach to achieve a more reliable safety assessment.


Asunto(s)
Cosméticos/farmacología , Fibroblastos/efectos de los fármacos , Estilo de Vida , Nanopartículas/química , Piel/efectos de los fármacos , Titanio/química , Adolescente , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cosméticos/química , Relación Dosis-Respuesta a Droga , Humanos , Tamaño de la Partícula
20.
Allergy ; 75(4): 882-891, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31750952

RESUMEN

BACKGROUND: Transforming growth factor ß1 (TGFß1) is a cytokine that exerts immunosuppressive functions, as reflected by its ability to induce regulatory T (Treg) cell differentiation and inhibit Th1 and Th2 responses. Hence, peptides that mimic the active core domain of TGFß1 may be promising candidates for modulation of the allergic response. This study aimed to investigate a synthetic TGFß1 mimetic peptide (TGFß1-mim) for its ability to modulate the immune response during allergic sensitization to grass pollen allergens. METHODS: The in vitro action of TGFß1-mim was evaluated in human lung epithelial cells, Jurkat cells, and rat basophilic leukemia cells. The in vivo action was evaluated in a murine model of Phl p 5 allergic sensitization. Additionally, the Th2 modulatory response was evaluated in IL-4 reporter mice. RESULTS: In vitro, TGFß1-mim downregulated TNF-α production, IL-8 gene expression, and cytokine secretion, upregulated IL-10 secretion, and inhibited Phl p 5-induced basophil degranulation. During Phl p 5 sensitization in mice, TGFß1-mim downregulated IL-2, IL-4, IL-5, IL-13, and IFN-γ, upregulated IL-10, and induced Treg cell production. Furthermore, mice treated with TGFß1-mim had lower levels of IgE, IgG1, IgG2a and higher levels of IgA antibodies than control mice. In a reporter mouse, the mimetic inhibited Th2 polarization. CONCLUSION: The TGFß1-mim efficiently modulated various important events that exacerbate the allergic microenvironment, including the production of main cytokines that promote Th1 and Th2 differentiation, and the induction of allergen-specific regulatory T cells, highlighting its potential use in therapeutic approaches to modulate the immune response toward environmental allergens.


Asunto(s)
Alérgenos , Péptidos , Factor de Crecimiento Transformador beta1 , Animales , Biomimética , Inmunoglobulina E , Ratones , Péptidos/farmacología , Poaceae , Polen/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...