Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2787: 245-253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656494

RESUMEN

To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.


Asunto(s)
Cannabis , Regulación de la Expresión Génica de las Plantas , Nicotiana , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Cannabis/genética , Cannabis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/genética , Genes Reporteros , Expresión Génica/genética , Glucuronidasa/genética , Glucuronidasa/metabolismo
2.
Nano Lett ; 23(11): 5281-5287, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272864

RESUMEN

Biotemplated syntheses have emerged as an efficient strategy to control the assembly of metal nanoparticles (NPs) and generate promising plasmonic properties for sensing or biomedical applications. However, understanding the nucleation and growth mechanisms of metallic nanostructures on biotemplate is an essential prerequisite to developing well-controlled nanotechnologies. Here, we used liquid cell Transmission Electron Microscopy (TEM) to reveal how the formation kinetics of gold NPs affects their size and density on Tobacco Mosaic Virus (TMV). These in situ insights are used as a guideline to optimize bench-scale synthesis with the possibility to homogenize the coverage and tune the density of gold NPs on TMV. In line with in situ TEM observations, fluorescence spectroscopy confirms that the nucleation of NPs occurs on the virus capsid rather than in solution. The proximity of gold NPs on TMV allows shifting the plasmonic resonance of the assembly in the biological window.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Virus del Mosaico del Tabaco , Nanopartículas del Metal/química , Virus del Mosaico del Tabaco/química , Oro/química , Microscopía Electrónica de Transmisión
3.
Viruses ; 14(5)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632840

RESUMEN

We have developed a Potato virus X (PVX)-based vector system compatible with the GoldenBraid 2.0 (GB) cloning strategy to transiently express heterologous proteins or peptides in plants for biotechnological purposes. This vector system consists of three domestication vectors carrying three GB parts-the cauliflower mosaic virus (CaMV) 35S promoter with PVX upstream of the second subgenomic promoter of the PVX coat protein (PVX CP SGP), nopaline synthase (NOS) terminator with PVX downstream of the first PVX CP SGP and the gene of interest (GOI). The full-length PVX clone carrying the sequence encoding a green fluorescent protein (GFP) as GOI was incorporated into the binary GB vector in a one-step reaction of three GB parts using the four-nucleotide GB standard syntax. We investigated whether the obtained vector named GFP/pGBX enables systemic PVX infection and expression of GFP in Nicotiana benthamiana plants. We show that this GB-compatible vector system can be used for simple and efficient assembly of PVX-based expression constructs and that it meets the current need for interchange of standard biological parts used in different expression systems.


Asunto(s)
Potexvirus , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plantas , Potexvirus/genética , Nicotiana
4.
Viruses ; 14(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35215892

RESUMEN

Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Virus ARN/aislamiento & purificación , Productos Agrícolas/virología , ADN Polimerasa Dirigida por ADN/metabolismo , Filogenia , Virus de Plantas/clasificación , Virus de Plantas/genética , Reacción en Cadena de la Polimerasa/instrumentación , Virus ARN/clasificación , Virus ARN/genética , Sensibilidad y Especificidad
5.
J Hazard Mater ; 405: 124278, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33168310

RESUMEN

Biosolids were applied as a fertilizer after drying, torrefaction (220, 320 °C), and pyrolysis (420, 520, 620 °C). Lettuce was grown on contrasting soils, and the transfer of pharmaceuticals to aboveground biomass was assessed. Of 42 compounds detected in dried biosolids, 10 were found in lettuce. Their potency for translocation to aerial parts was in the order: ethenzamide > carbamazepine > mirtazapine~tramadol > N-desmethyltramadol~solifenacin > sertraline~trazodone~venlafaxine > propafenone. Application of dried biosolids resulted in the highest uptake of pharmaceuticals and the neutral soil further intensified the uptake due to prevalent neutral speciation of the ionizable basic molecules. Torrefaction reduced the total pharmaceutical content in biosolids by 92.2% and 99.5% at 220 and 320 °C, respectively. Torrefied biosolids significantly reduced the uptake of pharmaceuticals and led to the highest biomass on acidic soil but were phytotoxic on the neutral soil. Pyrolysed biosolids increased the biomass production of lettuce on both soils and blocked the uptake of pharmaceuticals. A minimum biosolids pyrolysis temperature of 420 °C should be ensured prior to soil application as it represents a good compromise between fertilization potential, pharmaceutical uptake, and homogeneity of plant response regardless of the soil characteristics.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes del Suelo , Biosólidos , Pirólisis , Suelo , Contaminantes del Suelo/análisis
6.
Front Plant Sci ; 11: 522059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193468

RESUMEN

Methods for simple and fast assembly of exchangeable standard DNA parts using Type II S restriction enzymes are becoming more and more popular in plant synthetic and molecular biology. These methods enable routine construction of large and complex multigene DNA structures. Two available frameworks emphasize either high cloning capacity (Modular Cloning, MoClo) or simplicity (GoldenBraid, GB). Here we present a set of novel α-level plasmids compatible with the GB convention that extend the ability of GB to rapidly assemble more complex genetic constructs, while maintaining compatibility with all existing GB parts as well as most MoClo parts and GB modules. With the use of our new plasmids, standard GB parts can be assembled into complex assemblies containing 1, 5, 10 and up to theoretically 50 units in each successive level of infinite loop assembly. Assembled DNA constructs can be also combined with conventional binary GB-assemblies (1, 2, 4, 8… units). We demonstrate the usefulness of our framework on single tube assembly of replicating plant expression constructs based on the geminivirus Bean yellow dwarf virus (BeYDV).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...