Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 157(19): 194112, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414467

RESUMEN

The effect of surface mode vibrations on the reactive scattering of D2, initialized in the ground rovibrational state (v = 0, j = 0), from a Cu(111) surface is investigated for different surface temperature situations. We adopt a time and temperature dependent effective Hamiltonian [Dutta et al., J. Chem. Phys. 154, 104103 (2021)] constructed by combining the linearly coupled many oscillator model [Sahoo et al., J. Chem. Phys. 136, 084306 (2012)] and the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)] potential within the mean-field approach. Such an effective Hamiltonian is employed for six-dimensional quantum dynamical calculations to obtain temperature dependent reaction and state-to-state scattering probability profiles as a function of incidence energy of colliding D2 molecules. As reported in the experimental studies, the movements of surface atoms modify the dissociative scattering dynamics at higher surface temperature by exhibiting vibrational quantum and surface atoms' recoil effects in the low and high collision energy domains, respectively. Finally, we compare our present theoretical results with the experimental and other theoretical outcomes, as well as discuss the novelty of our findings.

2.
Phys Chem Chem Phys ; 24(4): 2185-2202, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35006221

RESUMEN

In this article, Beyond Born-Oppenheimer (BBO) treatment is implemented to construct diabatic potential energy surfaces (PESs) of 1,3,5-C6H3F3+ over a series [eighteen (18)] of two-dimensional (2D) nuclear planes constituted with eleven normal modes (Q2, Q9x, Q9y, Q13x, Q13y, Q18x, Q18y, Q10x, Q10y, Q12x and Q12y) to include all possible nonadiabatic interactions among six coupled electronic states (X̃2E'', , B̃2E' and ). We had formulated explicit expressions of adiabatic to diabatic transformation (ADT) equations [S. Mukherjee, J. Dutta, B. Mukherjee, S. Sardar and S. Adhikari, J. Chem. Phys., 2019, 150, 064308] for the same system forming six state sub-Hilbert space and at present, these ADT equations are solved by incorporating MRCI level ab initio adiabatic PESs and CP-MCSCF calculated nonadiabatic coupling terms (NACTs) to derive diabatic PESs and couplings. Such single-valued, smooth, symmetric and continuous diabatic surface matrices are utilized to carry out multi-state multi-mode nuclear dynamics with the help of time-dependent discrete variable representation (TDDVR) methodology to compute the photoelectron (PE) spectra of 1,3,5-C6H3F3. Our theoretically calculated spectra for X̃2E'', and states using BBO treatment and TDDVR dynamics show peak by peak correspondence with the experimental results as well as better than the findings of the multi-configuration time-dependent Hartree (MCTDH) method.

3.
J Phys Chem A ; 126(5): 691-709, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089047

RESUMEN

For the first time, using three different electronic structure methodologies, namely, CASSCF, RS2c, and MRCI(SD), we construct ab initio adiabatic potential energy surfaces (APESs) and nonadiabatic coupling term (NACT) of two electronic states (5Eg) of MnO69- unit, where eight such units share one La atom in LaMnO3 crystal. While fitting those APESs with analytic functions of normal modes (Qx, Qy), an empirical scaling factor is introduced considering the mass ratio of eight MnO69- units with and without one La atom to explore the environmental (mass) effect on MnO69- unit. When the roto-vibrational levels of MnO69- Hamiltonian are calculated, peak positions computed from ab initio constructed excited APESs are found to be enough close with the experimental satellite transitions [ J. Exp. Theor. Phys. 2016, 122, 890-901] endorsing our earlier model results [ J. Chem. Phys. 2019, 150, 064703]. In order to explore the electron-nuclear coupling in an alternate way, theoretically "exact" and numerically "accurate" beyond Born-Oppenheimer (BBO) theory based diabatic potential energy surfaces (PESs) of MnO69- are constructed to generate the photoelectron (PE) spectra. The PE spectral band also exhibits good peak by peak correspondence with the higher satellite transitions in the dielectric function spectra of the LaMnO3 complex.

4.
ACS Biomater Sci Eng ; 7(8): 3806-3820, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34269559

RESUMEN

Multiphasic calcium phosphate (Ca-P) has widely been explored for bone graft replacement. This study represents a simple method of developing osteoinductive scaffolds by direct printing of seashell resources. The process demonstrates a coagulation-assisted extrusion-based three-dimensional (3D) printing process for rapid fabrication of multiphasic calcium phosphate-incorporated 3D scaffolds. These scaffolds demonstrated an interconnected open porous architecture with improved compressive strength and higher surface area. Multiphasic calcium phosphate (Ca-P) and hydroxyapatite present in the multi-scalar naturally resourced scaffold displayed differential protein adsorption, thus facilitating cell adhesion, migration, and differentiation, resulting in enhanced deposition of the extracellular matrix. The microstructural and physicochemical attributes of the scaffolds also lead to enhanced stem cell differentiation as witnessed from gene and protein expression analysis. Furthermore, the histological study of subcutaneous implantation evidently portrays promising biocompatibility without foreign body reaction. Neo-tissue in-growth was manifested with abundant blood vessels, thus indicative of excellent vascularization. Notably, cartilaginous and proteoglycan-rich tissue deposition indicated ectopic bone formation via an endochondral ossification pathway. The hierarchical interconnected porous architectural tribology accompanied with multiphasic calcium phosphate composition manifests its successful implication in enhancing stem cell differentiation and promoting excellent tissue in-growth, thus making it a plausible alternative in bone tissue engineering applications.


Asunto(s)
Exoesqueleto , Andamios del Tejido , Animales , Fosfatos de Calcio , Impresión Tridimensional , Ingeniería de Tejidos
5.
J Chem Phys ; 154(10): 104103, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33722025

RESUMEN

The effect of surface atom vibrations on H2 scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state (v = 0, j = 0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six-dimensional effective Hamiltonian, we employ (a) a chemically accurate potential energy surface according to the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)]; (b) normal mode frequencies and displacement vectors calculated with different surface atom interaction potentials within a cluster approximation; and (c) initial state distributions for the vibrational modes according to Bose-Einstein probability factors. We carry out 6D quantum dynamics with the so-constructed effective Hamiltonian and analyze sticking and state-to-state scattering probabilities. The surface atom vibrations affect the chemisorption dynamics. The results show physically meaningful trends for both reaction and scattering probabilities compared to experimental and other theoretical results.

6.
Phys Chem Chem Phys ; 22(47): 27496-27524, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33283826

RESUMEN

We present first principle based beyond Born-Oppenheimer (BBO) theory and its applications on various models as well as realistic spectroscopic and scattering processes, where the Jahn-Teller (JT) theory is brought in conjunction with the BBO approach on the phase transition of lanthanide complexes. Over one and half decades, our development of BBO theory is demonstrated with ab initio calculations on representative molecules of spectroscopic interest (NO2 radical, Na3 and K3 clusters, NO3 radical, C6H6+ and 1,3,5-C6H3F3+ radical cations) as well as triatomic reactive scattering processes (H+ + H2 and F + H2). Such an approach exhibits the effect of JT, Renner-Teller (RT) and pseudo Jahn-Teller (PJT) type of interactions. While implementing the BBO theory, we generate highly accurate diabatic potential energy surfaces (PESs) to carry out quantum dynamics calculation and find excellent agreement with experimental photoelectron spectra of spectroscopic systems and cross-sections/rate constants of scattering processes. On the other hand, such electron-nuclear couplings incorporated through JT theory play a crucial role in dictating higher energy satellite transitions in the dielectric function spectra of the LaMnO3 complex. Overall, this article thoroughly sketches the current perspective of the BBO approach and its connection with JT theory with various applications on physical and chemical processes.

7.
J Chem Phys ; 150(6): 064308, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769968

RESUMEN

In order to circumvent numerical inaccuracy originating from the singularity of nonadiabatic coupling terms (NACTs), we need to perform kinetically coupled adiabatic to potentially coupled diabatic transformation of the nuclear Schrödinger Equation. Such a transformation is difficult to achieve for higher dimensional sub-Hilbert spaces due to inherent complicacy of adiabatic to diabatic transformation (ADT) equations. Nevertheless, detailed expressions of ADT equations are formulated for six coupled electronic states for the first time and their validity is extensively examined for a well-known radical cation, namely, 1,3,5-C6H3F3 + (TFBZ+). While implementing this formulation, we compute ab initio adiabatic potential energy surfaces (PESs) and NACTs within the low-lying six electronic states (X̃2E'', Ã2A2 '', B̃2E', and C̃2A2 '), where several types of nonadiabatic interactions, like Jahn-Teller conical intersections (CI), accidental CIs, accidental seams (series of degenerate points), and pseudo Jahn-Teller interactions can be observed over the Franck-Condon region of nuclear configuration space. Those interactions are depicted by exploring degenerate components of C-C asymmetric stretching, C-C symmetric stretching, and C-C-C scissoring motion (Q9x, Q9y, Q10x, Q10y, Q12x, and Q12y) to compute complete active space self-consistent field level adiabatic PESs and NACTs as implemented in the MOLPRO quantum chemistry package. Subsequently, we perform the ADT using our newly devised fifteen (15) ADT equations to locate the position of CIs, verify the quantization of NACTs, and to construct highly accurate diabatic PESs.

8.
J Chem Phys ; 150(6): 064703, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769982

RESUMEN

A model Hamiltonian for centrifugally stabilized electronic-vibrational motion of a cubic perturbed upper "Mexican hat" potential surface for a Mn3+ ion in an octahedral symmetry is formulated, and its eigenspectrum is explored. Theoretically calculated eigenvalues for cubic perturbed ground and excited electronic states are employed to interpret the origin of higher energy narrow side bands (satellite transitions) appearing in the dielectric function spectra of the LaMnO3 complex, which exhibit anomalous temperature dependence in the vicinity of the Néel temperature, TN ≃ 140 K [N. N. Kovaleva et al., J. Exp. Theor. Phys. 122, 890 (2016)].

9.
Toxicol In Vitro ; 57: 81-95, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30790621

RESUMEN

Silver nanoparticles are explored for many advanced biological applications including the development of antimicrobial surfaces on implants, SERS imaging, nanotherapeutics, biosensing and much more. However, recent research findings suggest silver nanoparticles provide blockade of differentiation of mesenchymal stem cells (MSCs), especially into osteogenic developmental pathway via generation of reactive oxygen species. These studies suggest that the application of silver nanoparticles in medical implants should be prohibited. In the current study, carbon nanodots (CND) supported silver clusters (AgC) is explored as a remedy to this problem. The nanostructure was synthesized in microwave irradiation induced rapid method and characterization was conducted via UV-Vis spectroscopy, fluorescence spectroscopy, HRTEM, XRD, FTIR, Raman spectroscopy, DLS, AFM, and XPS. Fluorescence spectrum showed a quantum yield of 0.25 while Raman spectroscopy showed rapid amplification of CND specific peaks implicating significant SERS property. Further in vitro biocompatibility (MTT) and bio-imaging capability was assessed culturing Wharton's Jelly-derived MSCs. In this study, its efficacy as in-situ cellular oxidative stress scavenger is also studied using NBT and DCFH-DA assay. Via ALP assay, alizarin red staining, cell membrane nanoindentation studies, PCR analysis and immunocytochemistry for osteoblast-like gene expression it was confirmed that AgCs can control silver nanoparticle-induced inhibition of osteogenic differentiation in vitro. Thus, AgCs (Carbon nanodots supported silver clusters) are not only considered to be a dual-mode bio-imaging nanoprobe but also a remedy to the silver-induced ROS generation and osteogenic differentiation blockade of MSCs.


Asunto(s)
Antibacterianos/toxicidad , Carbono/administración & dosificación , Células Madre Mesenquimatosas/efectos de los fármacos , Nanoestructuras/administración & dosificación , Nanoestructuras/toxicidad , Sustancias Protectoras/administración & dosificación , Plata/toxicidad , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Hemólisis/efectos de los fármacos , Osteogénesis , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
10.
ACS Biomater Sci Eng ; 5(7): 3549-3560, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-33405737

RESUMEN

Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be useful for bimodal imaging (fluorescence and MRI). Further, 3D printed gelatin-FeCD nanocomposite nanoparticles were prepared and used for tissue engineering using static magnetic actuation. Wharton's jelly derived mesenchymal stem cells (MSCs) were cultured on them with magnetic actuation and implanted at the subcutaneous region. The tissues obtained have shown features of both osteogenic and chondrogenic differentiation of the stem cells in vivo. In vitro, PCR studies show MSCs express gene expression of both bone and cartilage-specific markers, suggesting FeCDs under magnetic actuation can lead MSCs to go through differentiating into an endochondral ossification route.

11.
ACS Biomater Sci Eng ; 5(1): 346-356, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33405855

RESUMEN

Biomass derived carbon dots (CD) have been observed to be excellent bioimaging probes due to their nontoxic, stable fluorescence, lesser bleachability, and excellent bioconjugation properties. In the current study, green chili extract derived CD synthesis via microwave irradiation is reported. The time dependent top down degradation of carbonaceous materials to CD are monitored via electron microscopy and correlated with fluorescence intensity. Further, the CD were explored for long-term cell tracking and cell therapy monitoring in a rodent model to study wound healing kinetics. The cells were monitorable up to 21 days (until the entire wound healed). CD were observed to scavenge reactive oxygen species (ROS) in vitro and in vivo and provided control over ROS scavenging enzyme gene expressions via down regulation. Further, it was observed to remodel the wound healing kinetics via altering granulation tissue distribution and formation of microvessels to establish the capability of CD to enhance wound healing.

12.
ACS Biomater Sci Eng ; 5(1): 149-164, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33405857

RESUMEN

Tissue engineering has a major emphasis in creating tissue specific extracellular ambiance by altering chemical functionalities of scaffold materials. Heterogeneity of osteochondral tissue necessitates tailorable bone and cartilage specific extracellular environment. Carboxylate- and sulfate-functionalized glycosaminoglycans (GAGs) in cartilage extracellular matrix (ECM) create an acidic ambience to support chondrogenic activity, whereas phosphate-rich environment in bone enables chelation of calcium leading to the formation of mineralized matrix along with an alkaline environment to support osteogenesis. In this study, chitosan, a naturally occurring GAGs, was functionalized with phosphate/sulfate groups analogous to bone/cartilage ECM and incorporated in thermogelling agarose hydrogel for delivery to osteochondral defects. In vitro studies revealed significantly higher adhesion and proliferation of adipose derived mesenchymal stem cells (ADMSCs) with blended hydrogels as compared to that of native agarose. Cell differentiation and RT-PCR studies of the phosphorylated hydrogels revealed higher osteogenic potential, while sulfated hydrogels demonstrated enhanced chondrogenic activity in comparison to agarose. Recovery of osteochondral defects after delivery of the thermoresponsive agarose-based hydrogels decorated with phosphorylated derivatives showed significantly higher bone formation. On the other hand, cartilage formation was significant with chitosan sulfate decorated hydrogels. The study highlights the role of chitosan derivatives in osteochondral defect healing, especially phosphorylated ones as bone promoter, whereas sulfated ones act as cartilage enhancer, which was quantitatively distinguished through micro-CT-based noninvasive imaging and analysis.

13.
ACS Omega ; 3(10): 12465-12475, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457977

RESUMEN

We carry out detailed investigation for topological effects of two molecular systems, NO3 radical and C6H6 + (Bz+) radical cation, where the dressed adiabatic, dressed diabatic, and adiabatic-via-dressed diabatic potential energy curves (PECs) are generated employing ab initio calculated adiabatic and diabatic potential energy surfaces (PESs). We have implemented beyond Born-Oppenheimer (BBO) theory for constructing smooth, single-valued, and continuous diabatic PESs for five coupled electronic states [J. Phys. Chem. A 2017, 121, 6314-6326]. In the case of NO3 radical, the nonadiabatic coupling terms (NACTs) among the low-lying five electronic states, namely, X̃ 2A2 ' (12B2), A~ 2E″ (12A2 and 12B1), and B~ 2E' (12A1 and 22B2), bear the signature of Jahn-Teller (JT) interactions, pseudo JT (PJT) interactions, and accidental conical intersections (CIs). Similarly, Bz+ radical cation also exhibits JT, PJT, and accidental CIs in the interested domain of nuclear configuration space. In order to generate dressed PECs, two components of degenerate in-plane asymmetric stretching modes are selectively chosen for both the molecular species (Q 3x -Q 3y pair for NO3 radical and Q 16x -Q 16y pair for Bz+ radical cation). The JT coupling between the electronic states is essentially originated through the asymmetric stretching normal mode pair, where the coupling elements exhibit symmetric and nonlinear functional behavior along Q 3x and Q 16x normal modes.

14.
ACS Appl Mater Interfaces ; 9(45): 39235-39248, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29058878

RESUMEN

Cementless fixation for orthopedic implants aims to obviate challenges associated with bone cement, providing long-term stability of bone prostheses after implantation. The application of porous titanium and its alloy-based implants is emerging for load-bearing applications due to their high specific strength, low stiffness, corrosion resistance, and superior osteoconductivity. In this study, coagulant-assisted foaming was utilized for the fabrication of porous Ti6Al4 V using egg-white foam. Samples with three different porosities of 68.3%, 75.4%, and 83.1% and average pore sizes of 92, 178, and 297 µm, respectively, were prepared and subsequently characterized for mechanical properties, osteogenesis, and tissue ingrowth. A microstructure-mechanical properties relationship study revealed that an increase of porosity from 68.3 to 83.1% increased the average pore size from 92 to 297 µm with the subsequent reduction of compresive strength by 85% and modulus by 90%. Samples with 75.4% porosity and a 178 µm average pore size produced signifcant osteogenic effects on human mesenchymal stem cells, which was further supported by immunocytochemistry and real-time polymerase chain reaction data. Quantitative assessment of bone ingrowth by micro-computed tomography revealed that there was an approximately 52% higher bone formation and more than 90% higher bone penetration at the center of femoral defects in rabbit when implanted with Ti6Al4 V foam (75.4% porosity) compared to the empty defects after 12 weeks. Hematoxylin and eosin (H&E) and Masson trichrome (MT) staining along with energy-dispersive X-ray mapping on the sections obtained from the retrieved bone samples support bone ingrowth into the implanted region.


Asunto(s)
Titanio/química , Aleaciones , Animales , Huesos , Fenómenos Químicos , Hipersensibilidad al Huevo , Humanos , Osteogénesis , Porosidad , Conejos , Microtomografía por Rayos X
15.
ACS Appl Mater Interfaces ; 8(19): 11910-24, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-26853051

RESUMEN

Natural origin bioceramics are widely used for bone grafts. In the present study, an eggshell-derived bioceramic scaffold is fabricated by 3D printing as a potential bone-graft analogue. The eggshell, a biological waste material, was mixed with a specific ratio of phosphoric acid and chitosan to form a precursor toward the fabrication of an osteoinductive multiphasic calcium phosphate scaffold via a coagulation-assisted extrusion and sintering for a multiscalar hierarchical porous structure with improved mechanical properties. Physicochemical characterization of the formed scaffolds was carried out for phase analysis, surface morphology, and mechanical properties. A similar scaffold was prepared using a chemically synthesized calcium phosphate powder that was compared with the natural origin one. The higher surface area associated with the interconnected porosity along with multiple phases of the natural origin scaffold facilitated higher cell adhesion and proliferation compared to the chemically synthesized one. Further, the natural origin scaffold displayed relatively higher cell differentiation activity, as is evident by protein and gene expression studies. On subcutaneous implantation for 30 days, promising vascular tissue in-growth was observed, circumventing a major foreign body response. Collagen-rich vascular extracellular matrix deposition and osteocalcin secretion indicated bonelike tissue formation. Finally, the eggshell-derived multiphasic calcium phosphate scaffold displayed improvement in the mechanical properties with higher porosity and osteoinductivity compared to the chemically derived apatite and unveiled a new paradigm for utilization of biological wastes in bone-graft application.


Asunto(s)
Cáscara de Huevo , Animales , Fosfatos de Calcio , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...