Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38995966

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Asunto(s)
Enfermedad de Alzheimer , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Humanos , Placa Amiloide/patología , Placa Amiloide/inmunología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Encéfalo/patología , Encéfalo/inmunología , Masculino , Interferón gamma/metabolismo , Interferón gamma/inmunología , Envejecimiento/inmunología , Memoria Inmunológica , Células T de Memoria/inmunología , Perforina/metabolismo , Perforina/genética , Femenino
2.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328072

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/fibrillar pTau, however, appears to vary depending on the animal model used. Our prior work suggested that antigen-specific memory CD8 T (" hi T") cells act upstream of Aß/pTau after brain injury. Here we examine whether hi T cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hi T mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. Our work is the first to identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD. Significance Statement: This study changes our view of Alzheimer's Disease (AD) initiation and progression. Mutations promoting cerebral beta-amyloid (Aß) deposition guarantee rare genetic forms of AD. Thus, the prevailing hypothesis has been that Aß is central to initiation and progression of all AD, despite contrary animal and patient evidence. We show that age-related T cells generate neurodegeneration with compelling features of AD in mice, with distinct T cell functions required for pathological initiation and neurodegenerative progression. Knowledge from these mice was applied to successfully predict previously unknown features of human AD and generate novel tools for its clinical management.

3.
Mech Ageing Dev ; 191: 111351, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910956

RESUMEN

Mitigating effects of aging on human health remains elusive because aging impacts multiple systems simultaneously, and because experimental animals exhibit critical aging differences relative to humans. Separation of aging into discrete processes may identify targetable drivers of pathology, particularly when applied to human-specific features. Gradual homeostatic expansion of CD8 T cells dominantly alters their function in aging humans but not in mice. Injecting T cells into athymic mice induces rapid homeostatic expansion, but its relevance to aging remains uncertain. We hypothesized that homeostatic expansion of T cells injected into T-deficient hosts models physiologically relevant CD8 T cell aging in young mice, and aimed to analyze age-related T cell phenotype and tissue pathology in such animals. Indeed, we found that such injection conferred uniform age-related phenotype, genotype, and function to mouse CD8 T cells, heightened age-associated tissue pathology in young athymic hosts, and humanized amyloidosis after brain injury in secondary wild-type recipients. This validates a model conferring a human-specific aging feature to mice that identifies targetable drivers of tissue pathology. Similar examination of independent aging features should promote systematic understanding of aging and identify additional targets to mitigate its effects on human health.


Asunto(s)
Envejecimiento/inmunología , Amiloidosis/inmunología , Lesiones Encefálicas/inmunología , Linfocitos T CD8-positivos/inmunología , Senescencia Celular/inmunología , Envejecimiento/genética , Amiloidosis/genética , Animales , Senescencia Celular/genética , Femenino , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos
4.
PLoS One ; 5(6): e10974, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20539758

RESUMEN

BACKGROUND: Small populations of highly tumorigenic stem-like cells (cancer stem cells; CSCs) can exist within, and uniquely regenerate cancers including malignant brain tumors (gliomas). Many aspects of glioma CSCs (GSCs), however, have been characterized in non-physiological settings. METHODS: We found gene expression similarity superiorly defined glioma "stemness", and revealed that GSC similarity increased with lower tumor grade. Using this method, we examined stemness in human grade IV gliomas (GBM) before and after dendritic cell (DC) vaccine therapy. This was followed by gene expression, phenotypic and functional analysis of murine GL26 tumors recovered from nude, wild-type, or DC-vaccinated host brains. RESULTS: GSC similarity was specifically increased in post-vaccine GBMs, and correlated best to vaccine-altered gene expression and endogenous anti-tumor T cell activity. GL26 analysis confirmed immune alterations, specific acquisition of stem cell markers, specifically enhanced sensitivity to anti-stem drug (cyclopamine), and enhanced tumorigenicity in wild-type hosts, in tumors in proportion to anti-tumor T cell activity. Nevertheless, vaccine-exposed GL26 cells were no more tumorigenic than parental GL26 in T cell-deficient hosts, though they otherwise appeared similar to GSCs enriched by chemotherapy. Finally, vaccine-exposed GBM and GL26 exhibited relatively homogeneous expression of genes expressed in progenitor cells and/or differentiation. CONCLUSIONS: T cell activity represents an inducible physiological process capable of proportionally enriching GSCs in human and mouse gliomas. Stem-like gliomas enriched by strong T cell activity, however, may differ from other GSCs in that their stem-like properties may be disassociated from increased tumor malignancy and heterogeneity under specific host immune conditions.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Células Madre Neoplásicas/citología , Linfocitos T Citotóxicos/citología , Animales , Secuencia de Bases , Neoplasias Encefálicas/genética , Cartilla de ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioma/genética , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA