Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 21(1): 81-87, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845363

RESUMEN

Synchronization of large spin Hall nano-oscillator (SHNO) arrays is an appealing approach toward ultrafast non-conventional computing. However, interfacing to the array, tuning its individual oscillators and providing built-in memory units remain substantial challenges. Here, we address these challenges using memristive gating of W/CoFeB/MgO/AlOx-based SHNOs. In its high resistance state, the memristor modulates the perpendicular magnetic anisotropy at the CoFeB/MgO interface by the applied electric field. In its low resistance state the memristor adds or subtracts current to the SHNO drive. Both electric field and current control affect the SHNO auto-oscillation mode and frequency, allowing us to reversibly turn on/off mutual synchronization in chains of four SHNOs. We also demonstrate that two individually controlled memristors can be used to tune a four-SHNO chain into differently synchronized states. Memristor gating is therefore an efficient approach to input, tune and store the state of SHNO arrays for non-conventional computing models.

2.
Nat Commun ; 11(1): 4006, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782243

RESUMEN

Spin Hall nano-oscillators (SHNOs) are emerging spintronic devices for microwave signal generation and oscillator-based neuromorphic computing combining nano-scale footprint, fast and ultra-wide microwave frequency tunability, CMOS compatibility, and strong non-linear properties providing robust large-scale mutual synchronization in chains and two-dimensional arrays. While SHNOs can be tuned via magnetic fields and the drive current, neither approach is conducive to individual SHNO control in large arrays. Here, we demonstrate electrically gated W/CoFeB/MgO nano-constrictions in which the voltage-dependent perpendicular magnetic anisotropy tunes the frequency and, thanks to nano-constriction geometry, drastically modifies the spin-wave localization in the constriction region resulting in a giant 42% variation of the effective damping over four volts. As a consequence, the SHNO threshold current can be strongly tuned. Our demonstration adds key functionality to nano-constriction SHNOs and paves the way for energy-efficient control of individual oscillators in SHNO chains and arrays for neuromorphic computing.

3.
Nat Nanotechnol ; 15(1): 47-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873287

RESUMEN

In spin Hall nano-oscillators (SHNOs), pure spin currents drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and may mutually synchronize. Here, we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 × 2 to 8 × 8 nano-constrictions, observed both electrically and using micro-Brillouin light scattering microscopy. On short time scales, where the auto-oscillation linewidth [Formula: see text] is governed by white noise, the signal quality factor, [Formula: see text], increases linearly with the number of mutually synchronized nano-constrictions (N), reaching 170,000 in the largest arrays. We also show that SHNO arrays exposed to two independently tuned microwave frequencies exhibit the same synchronization maps as can be used for neuromorphic vowel recognition. Our demonstrations may hence enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and ultra-fast neuromorphic computing.

4.
Nat Commun ; 10(1): 2362, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142758

RESUMEN

Spin torque and spin Hall effect nano-oscillators generate high intensity spin wave auto-oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices require externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nano-constrictions in single 15-20 nm thick permalloy layers with oxide interfaces. Using a combination of spin torque ferromagnetic resonance measurements, scanning micro-Brillouin light scattering microscopy, and micromagnetic simulations, we identify the auto-oscillations as emanating from a localized edge mode of the nano-constriction driven by spin-orbit torques. Our results pave the way for greatly simplified designs of auto-oscillating nano-magnetic systems only requiring single ferromagnetic layers with oxide interfaces.

5.
Phys Rev Lett ; 120(21): 217204, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883139

RESUMEN

Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...