Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456486

RESUMEN

In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.


Asunto(s)
Drosophila , Macrófagos , Humanos , Animales , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo
2.
Macromol Biosci ; : e2300558, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350051

RESUMEN

Prevention of fouling from proteins in blood plasma attracts significant efforts, and great progress is made in identifying surface coatings that display antifouling properties. In particular, poly(ethylene glycol) (PEG) is widely used and dense PEG-like cylindrical brushes of poly[oligo(ethylene glycol) methacrylate] (poly(OEGMA)) can drastically reduce blood plasma fouling. Herein, a comprehensive study of the variation of blood plasma fouling on this surface, including the analysis of the composition of protein deposits on poly(OEGMA) coatings after contact with blood plasma from many different donors, is reported. Correlation between the plasma fouling behavior and protein deposit composition points to the activation of the complement system as the main culprit of dramatically increased and accelerated deposition of blood plasma proteins on this type of antifouling coating, specifically through the classical pathway. These findings are consistent with observations on PEGylated drug carriers and highlight the importance of understanding the potential interactions between antifouling coatings and their environment.

3.
Insect Biochem Mol Biol ; 165: 104072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185274

RESUMEN

Ticks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored. To fill this gap, we sought to uncover the repertoire of genes expressed in the fat body associated with trachea (FB/Tr) by analyzing the transcriptome of individual, partially fed (previtellogenic) Ixodes ricinus females. The resulting catalog of individual mRNA sequences reveals a broad repertoire of transcripts encoding proteins involved in nutrient storage and distribution, as well as components of the tick immune system. To gain a detailed insight into the secretory products of FB/Tr specifically involved in inter-tissue transport and humoral immunity, the transcriptomic data were complemented with the proteome of soluble proteins in the hemolymph of partially fed female ticks. Among these proteins, the hemolipoglyco-carrier proteins were predominant. When comparing immune peptides and proteins from the fat body with those produced by hemocytes, we found that the fat body serves as a unique producer of certain immune components. Finally, time-resolved transcriptional regulation of selected immune transcripts from the FB/Tr was examined in response to experimental challenges with model microbes and analyzed by RT-qPCR. Overall, our data show that the fat body of ticks, similar to insects, is an important metabolic tissue that also plays a remarkable role in immune defense against invading microbes. These findings improve our understanding of tick biology and its impact on the transmission of tick-borne pathogens.


Asunto(s)
Hemolinfa , Ixodes , Femenino , Animales , Proteómica , Cuerpo Adiposo/metabolismo , Ixodes/genética , Ixodes/metabolismo , Perfilación de la Expresión Génica , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
4.
Mol Cell Proteomics ; 22(11): 100663, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832788

RESUMEN

Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.


Asunto(s)
Ixodes , Animales , Ixodes/parasitología , Proteoma , Proteómica , Sistema Digestivo
5.
Front Immunol ; 14: 1041325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875079

RESUMEN

The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.


Asunto(s)
Enfermedades Renales , Oncorhynchus mykiss , Animales , Eritrocitos , Linfocitos B , Inmunoglobulina M
6.
Front Cell Infect Microbiol ; 13: 1112952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743301

RESUMEN

Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.


Asunto(s)
Argasidae , Borrelia , Ornithodoros , Animales , Saliva , Borrelia/fisiología
7.
Macromol Biosci ; 22(11): e2200247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35917216

RESUMEN

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.


Asunto(s)
Incrustaciones Biológicas , Trombosis , Humanos , Adsorción , Polímeros/química , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Proteínas , Propiedades de Superficie
8.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34902239

RESUMEN

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/química , Mucosa Nasal/virología , Polímeros/química , ARN Viral/metabolismo , SARS-CoV-2 , Incrustaciones Biológicas , Bioensayo , Técnicas Biosensibles , Humanos , Iones , Límite de Detección , Espectrometría de Masas , Nasofaringe/virología , Fosfoproteínas/química , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Manejo de Especímenes
9.
Plants (Basel) ; 10(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685917

RESUMEN

A novel high molecular weight glutenin subunit encoded by the Glu-1B locus was identified in the French genotype Bagou, which we named 1B × 6.5. This subunit differed in SDS-PAGE from well-known 1B × 6 and 1B × 7 subunits, which are also encoded at this locus. Subunit 1B × 6.5 has a theoretical molecular weight of 88,322.83 Da, which is more mobile than 1B × 6 subunit, and isoelectric point (pI) of about 8.7, which is lower than that for 1B × 6 subunit. The specific primers were designed to amplify and sequence 2476 bp of the Glu-1B locus from genotype Bagou. A high level of similarity was found between the sequence encoding 1B × 6.5 and other x-type encoding alleles of this locus.

10.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1183-1196, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473088

RESUMEN

Iripin-5 is the main Ixodes ricinus salivary serpin, which acts as a modulator of host defence mechanisms by impairing neutrophil migration, suppressing nitric oxide production by macrophages and altering complement functions. Iripin-5 influences host immunity and shows high expression in the salivary glands. Here, the crystal structure of Iripin-5 in the most thermodynamically stable state of serpins is described. In the reactive-centre loop, the main substrate-recognition site of Iripin-5 is likely to be represented by Arg342, which implies the targeting of trypsin-like proteases. Furthermore, a computational structural analysis of selected Iripin-5-protease complexes together with interface analysis revealed the most probable residues of Iripin-5 involved in complex formation.


Asunto(s)
Antiinflamatorios , Inhibidores Enzimáticos , Ixodes/metabolismo , Serpinas , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Células Cultivadas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Eritrocitos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Neutrófilos , Conejos , Serpinas/química , Serpinas/aislamiento & purificación
11.
Ticks Tick Borne Dis ; 11(4): 101420, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278686

RESUMEN

Ticks, being vectors for a variety of pathogens such as tick-borne encephalitis virus (TBEV), have developed defense mechanisms and pathways against infections, allowing them to control the virus at a level that does not hinder their fitness and development. At the present moment, only a few studies focused on interactions between ticks and TBEV on a molecular level have been published. Here, a possible application of MALDI-TOF MS as a research tool for the investigation of tick-virus interactions was shown. Mass spectrometry (MS) profiles of TBEV-infected and non-infected IRE/CTVM19 tick cell line were compared using principal component analysis. MS spectra were clustered based on the cultivation time of cells, but not their infection status. Nevertheless, the analysis of loading plots revealed different factors (peaks) being involved in the clustering of infected and non-infected cells. Out of them, nine were assigned with proteins: five and four for non-infected and infected cells, respectively. Peak with m/z 8565 was found to be of interest because it was suppressed upon TBEV infection and assigned to proteasome subunit alpha type (B7QE67).


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Ixodes/virología , Animales , Línea Celular/virología
12.
Anal Bioanal Chem ; 412(5): 1037-1047, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31848667

RESUMEN

Several reports demonstrate that silver nanomaterials can serve as surface-assisted laser desorption ionization mass spectrometry (SALDI MS) substrates for low molecular weight analytes. Substrate with tailored silver nanostructures, primarily representing the upmost layer of the bulk, i.e., occurring beneath the analyzed medium, limits the use of silver only for desorption enhancement; the charge transfer progresses through atoms from the absorbing analyte or an additional matrix (resulting in the formation of analyte/hydrogen, sodium, or potassium adducts in the most cases). In the presented approach, we utilize a homogeneous layer of silver nanoparticles, prepared under low-pressure conditions, deposited onto a dried analyte. We demonstrate that the nanoparticle layer can fully replace a matrix typically used for the detection of small molecules by laser desorption/ionization mass spectrometry-based technique (LDI MS) and can be applied to the already prepared samples. Various chemical species were detected as [M + Ag]+ adduct ions employing the proposed technique. The normalized signal of the analyte/silver adduct can be utilized to characterize a quantitative presence of analytes on the surface similar to signal-to-noise value, here demonstrated by the detection of trimethoprim molecule. This study also includes a detailed description of additional features one needs to take into account, such as a formation of [Mx + Agy]+ adducts, presence of silver ions (can be used for m/z calibration), analyte fragmentation, and influence of deposited nanoparticles quantity on the signal intensity. Graphical abstract.

13.
Parasit Vectors ; 12(1): 212, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060584

RESUMEN

BACKGROUND: The availability of tick in vitro cell culture systems has facilitated many aspects of tick research, including proteomics. However, certain cell lines have shown a tissue-specific response to infection. Thus, a more thorough characterization of tick cell lines is necessary. Proteomic comparative studies of various tick cell lines will contribute to more efficient application of tick cell lines as model systems for investigation of host-vector-pathogen interactions. RESULTS: Three cell lines obtained from a hard tick, Ixodes ricinus, and two from I. scapularis were investigated. A cell mass spectrometry approach (MALDI-TOF MS) was applied, as well as classical proteomic workflows. Using PCA, tick cell line MS profiles were grouped into three clusters comprising IRE/CTVM19 and ISE18, IRE11 and IRE/CTVM20, and ISE6 cell lines. Two other approaches confirmed the results of PCA: in-solution digestion followed by nanoLC-ESI-Q-TOF MS/MS and 2D electrophoresis. The comparison of MS spectra of the cell lines and I. ricinus tick organs revealed 29 shared peaks. Of these, five were specific for ovaries, three each for gut and salivary glands, and one for Malpighian tubules. For the first time, characteristic peaks in MS profiles of tick cell lines were assigned to proteins identified in acidic extracts of corresponding cell lines. CONCLUSIONS: Several organ-specific MS signals were revealed in the profiles of tick cell lines.


Asunto(s)
Línea Celular , Ixodes/citología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Línea Celular/citología , Línea Celular/metabolismo , Electroforesis en Gel Bidimensional , Femenino , Proteínas de Insectos/metabolismo , Proteómica , Glándulas Salivales/citología , Espectrometría de Masas en Tándem
14.
Nat Nanotechnol ; 13(1): 65-71, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29203912

RESUMEN

Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/química , Pseudomonas aeruginosa/efectos de los fármacos , Plata , Antibacterianos/química , Antibacterianos/farmacología , Estabilidad de Medicamentos , Pruebas de Sensibilidad Microbiana , Plata/química , Plata/farmacología
15.
Protein Pept Lett ; 22(12): 1123-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26446562

RESUMEN

Trypsin is a protease, which is commonly used for the digestion of protein samples in proteomic experiments. The process of trypsin autolysis is known to produce autolytic peptides as well as active enzyme forms with one or more intra-chain splits. In consequence, their variable presence can influence the digestion of a protein substrate in the reaction mixture. Besides two major and well-studied forms named ß-trypsin and α-trypsin, there are also other active trypsin forms known such as γ-trypsin and pseudotrypsin (ψ-trypsin). In this work, the cleavage specificity of ψ-trypsin was evaluated using in-gel digestion of protein standards followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses of the resulting peptides. The numbers of produced and matching peptides were similar to those obtained using α-/ß-trypsin. The same experience was obtained with a real complex protein sample from rat urine. In previous reports, ψ-trypsin was supposed to generate non-specific cleavages, which has now been reevaluated. Purified ψ-trypsin cleaved all analyzed proteins preferentially on the C-terminal side of Lys and Arg residues in accordance with the canonical tryptic cleavage. However, a minor nonspecific cleavage performance was also registered (particularly after Tyr and Phe), which was considerably higher than in the case of trypsin itself.


Asunto(s)
Autólisis/metabolismo , Quimotripsina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tripsina/metabolismo , Animales , Quimotripsina/química , Proteínas/metabolismo , Proteinuria , Ratas , Tripsina/química
16.
Electrophoresis ; 33(2): 288-95, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22170586

RESUMEN

The major objective of proteomics is to identify and examine the large numbers of proteins extracted from complex biological systems. This is generally achieved by combining various techniques of protein separation with a mass spectrometric analysis of proteins that are digested enzymatically. Recently, several alternatives to this standard protocol have been developed for efficient and fast protein digestion. One option is the use of modified trypsin instead of native trypsin for the in-gel digestion of proteins. Microwave, ultrasonic-assisted protein enzymatic digestion and proteolysis accelerated by infrared radiation are other suitable alternatives. The application of the variable performance of the fast enzymatic digestion of proteins by using different techniques is reported here. The advantage of these methods is to have the ability to detect proteins in a shorter span of time. For example, using alternative protein digestion takes only minutes, in contrast to the several hours required by conventional methods. To demonstrate the suitability of this fast procedure, the digestion of carbonic anhydrase, bovine serum albumin, lysozyme and proteins extracted from plants (Hordeum vulgare, Arabidopsis thaliana) were used. Considering that the required reaction time for the conventional method is much longer, these applied methodic approaches tend to give in-gel digestion a much higher efficiency rating. This study examines the fast, efficient and low-cost proteolytic strategies for the digestion process, and for protein identification based on the use of ultrasound and infrared technology. In addition, comparisons of the applied techniques were studied. Several differences were found, suggesting the potential use of proteolysis accelerated by infrared radiation.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Electroforesis en Gel de Poliacrilamida/métodos , Datos de Secuencia Molecular , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Proteínas de Plantas , Proteínas/análisis , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
J Sci Food Agric ; 91(15): 2756-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21717465

RESUMEN

BACKGROUND: In barley, starch occurs in the form of granules with bimodal size distribution. Enzymatic hydrolysis of the starch granule is one of the most important reactions occurring during malting and mashing. Previous studies revealed the discrepancies in the assumption that barley varieties with better malting qualities should have a higher A/B (large/small starch granules) ratio. This led us to focus our attention on detailed analysis of two barley varieties, Jersey and Tolar, both with high malting quality but significantly differing in A/B (1.28 and 0.66, respectively), were chosen for more detailed analysis in the actual work. In this study, the capacity of gravitational field flow fractionation (GFFF) to monitor amylolysis of the starch granules was investigated. RESULTS: Isolated starch granules from these two barley cultivars were treated with amylases. The changes in starch granule size and bimodal distribution were studied by GFFF. Simultaneously, free sugars released during enzymatic digestion were observed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The changes in the fractogram and in the mass spectra reflect a correlation with the progress of enzymatic hydrolysis. CONCLUSION: The results show the interest in utilization of GFFF as a simple and cheap method for monitoring changes in the distribution of the starch granule size during amylolysis.


Asunto(s)
Carbohidratos/biosíntesis , Grano Comestible/química , Fraccionamiento de Campo-Flujo/métodos , Hordeum/química , Almidón/análisis , Amilasas/metabolismo , Tecnología de Alimentos , Gravitación , Hordeum/metabolismo , Hidrólisis , Tamaño de la Partícula , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Almidón/metabolismo
18.
J Exp Bot ; 62(3): 921-37, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20974740

RESUMEN

Cytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched. However, most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown. Early cytokinin responses were investigated through proteome-wide expression profiling based on image and mass spectrometric analysis of two-dimensionally separated proteins and phosphoproteins. The effects of 15 min treatments of 7-day-old Arabidopsis thaliana seedlings with four main cytokinins representing hydroxyisopentenyl, isopentenyl, aromatic, and urea-derived type cytokinins were compared to help elucidate their common and specific function(s) in regulating plant development. In proteome and phosphoproteome maps, significant differences were reproducibly observed for 53 and 31 protein spots, respectively. In these spots, 96 proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS), providing a snapshot of early links in cytokinin-regulated signalling circuits and cellular processes, including light signalling and photosynthesis, nitrogen metabolism, the CLAVATA pathway, and protein and gene expression regulation, in accordance with previously described cytokinin functions. Furthermore, they indicate novel links between temperature and cytokinin signalling, and an involvement of calcium ions in cytokinin signalling. Most of the differentially regulated proteins and phosphoproteins are located in chloroplasts, suggesting an as yet uncharacterized direct signalling chain responsible for cytokinin action in chloroplasts. Finally, first insights into the degree of specificity of cytokinin receptors on phosphoproteomic effects were obtained from analyses of cytokinin action in a set of cytokinin receptor double mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas/química , Fosfoproteínas/genética , Proteoma/química , Proteoma/genética , Proteómica , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Sensors (Basel) ; 8(1): 429-444, 2008 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27879715

RESUMEN

Using a paraffin impregnated graphite electrode (PIGE) and mercury-modifiedpyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNApurine base solutions have been studied by cyclic (CV) and linear sweep voltammetry(LSV) in connection with elimination voltammetry with linear scan (EVLS). In chlorideand bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with twocathodic and two anodic potentially separated signals. According to the eliminationfunction E4, the first cathodic peak corresponds to the reduction Cu(II) e⁻ → Cu(I) withthe possibility of fast disproportionation 2Cu(I) → Cu(II) Cu(0). The E4 of the secondcathodic peak signalized an electrode process controlled by a surface reaction. Theelectrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by onecathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodicstripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where thereduction of copper ions took place and Cu(I)-purine complexes were formed. By usingASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complexdetection was enhanced relative to either ASV or CSV alone, resulting in higher peakcurrents of more than one order of magnitude. The statistical treatment of CE data wasused to determine the reproducibility of measurements. Our results show that EVLS inconnection with the stripping procedure is useful for both qualitative and quantitativemicroanalysis of purine derivatives and can also reveal details of studied electrodeprocesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...