Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Am J Hum Genet ; 106(4): 453-466, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32197076

RESUMEN

Identity-by-descent (IBD) segments are a useful tool for applications ranging from demographic inference to relationship classification, but most detection methods rely on phasing information and therefore require substantial computation time. As genetic datasets grow, methods for inferring IBD segments that scale well will be critical. We developed IBIS, an IBD detector that locates long regions of allele sharing between unphased individuals, and benchmarked it with Refined IBD, GERMLINE, and TRUFFLE on 3,000 simulated individuals. Phasing these with Beagle 5 takes 4.3 CPU days, followed by either Refined IBD or GERMLINE segment detection in 2.9 or 1.1 h, respectively. By comparison, IBIS finishes in 6.8 min or 7.8 min with IBD2 functionality enabled: speedups of 805-946× including phasing time. TRUFFLE takes 2.6 h, corresponding to IBIS speedups of 20.2-23.3×. IBIS is also accurate, inferring ≥7 cM IBD segments at quality comparable to Refined IBD and GERMLINE. With these segments, IBIS classifies first through third degree relatives in real Mexican American samples at rates meeting or exceeding other methods tested and identifies fourth through sixth degree pairs at rates within 0.0%-2.0% of the top method. While allele frequency-based approaches that do not detect segments can infer relationship degrees faster than IBIS, the fastest are biased in admixed samples, with KING inferring 30.8% fewer fifth degree Mexican American relatives correctly compared with IBIS. Finally, we ran IBIS on chromosome 2 of the UK Biobank dataset and estimate its runtime on the autosomes to be 3.3 days parallelized across 128 cores.


Asunto(s)
Análisis de Secuencia/métodos , Alelos , Cromosomas Humanos Par 2/genética , Frecuencia de los Genes/genética , Genoma Humano/genética , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética
2.
PLoS Genet ; 15(12): e1007979, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860654

RESUMEN

Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim.


Asunto(s)
Mapeo Cromosómico/métodos , Simulación por Computador , Caracteres Sexuales , Femenino , Variación Genética , Genética de Población , Genoma Humano , Humanos , Masculino , Modelos Genéticos , Linaje , Distribución de Poisson
3.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227640

RESUMEN

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Asunto(s)
Ceramidas/biosíntesis , Ácido Graso Desaturasas/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Femenino , Genotipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
4.
Genes Brain Behav ; 18(4): e12530, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30379395

RESUMEN

Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL-specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican-American individuals from extended pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome-wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10-03 ).


Asunto(s)
Cromosomas Humanos Par 3/genética , Cognición , Inteligencia/genética , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
5.
Am J Hum Genet ; 103(1): 30-44, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29937093

RESUMEN

As genetic datasets increase in size, the fraction of samples with one or more close relatives grows rapidly, resulting in sets of mutually related individuals. We present DRUID-deep relatedness utilizing identity by descent-a method that works by inferring the identical-by-descent (IBD) sharing profile of an ungenotyped ancestor of a set of close relatives. Using this IBD profile, DRUID infers relatedness between unobserved ancestors and more distant relatives, thereby combining information from multiple samples to remove one or more generations between the deep relationships to be identified. DRUID constructs sets of close relatives by detecting full siblings and also uses an approach to identify the aunts/uncles of two or more siblings, recovering 92.2% of real aunts/uncles with zero false positives. In real and simulated data, DRUID correctly infers up to 10.5% more relatives than PADRE when using data from two sets of distantly related siblings, and 10.7%-31.3% more relatives given two sets of siblings and their aunts/uncles. DRUID frequently infers relationships either correctly or within one degree of the truth, with PADRE classifying 43.3%-58.3% of tenth degree relatives in this way compared to 79.6%-96.7% using DRUID.


Asunto(s)
Genoma Humano/genética , Polimorfismo de Nucleótido Simple/genética , Femenino , Genética de Población/métodos , Humanos , Masculino , Linaje , Hermanos
6.
Brain Behav ; 8(2): e00903, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29484263

RESUMEN

Background: The Caribbean vervet monkey (Chlorocebus aethiops sabaeus) is a potentially valuable animal model of neurodegenerative disease. However, the trajectory of aging in vervets and its relationship to human disease is incompletely understood. Methods: To characterize biomarkers associated with neurodegeneration, we measured cerebrospinal fluid (CSF) concentrations of Aß1-40, Aß1-42, total tau, and p-tau181 in 329 members of a multigenerational pedigree. Linkage and genome-wide association were used to elucidate a genetic contribution to these traits. Results: Aß1-40 concentrations were significantly correlated with age, brain total surface area, and gray matter thickness. Levels of p-tau181 were associated with cerebral volume and brain total surface area. Among the measured analytes, only CSF Aß1-40 was heritable. No significant linkage (LOD > 3.3) was found, though suggestive linkage was highlighted on chromosomes 4 and 12. Genome-wide association identified a suggestive locus near the chromosome 4 linkage peak. Conclusions: Overall, these results support the vervet as a non-human primate model of amyloid-related neurodegeneration, such as Alzheimer's disease and cerebral amyloid angiopathy, and highlight Aß1-40 and p-tau181 as potentially valuable biomarkers of these processes.


Asunto(s)
Envejecimiento , Péptidos beta-Amiloides , Encéfalo/patología , Angiopatía Amiloide Cerebral , Chlorocebus aethiops , Enfermedades de los Monos , Fragmentos de Péptidos , Proteínas tau , Envejecimiento/líquido cefalorraquídeo , Envejecimiento/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/genética , Animales , Biomarcadores/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Cromosomas de los Mamíferos , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Masculino , Modelos Animales , Enfermedades de los Monos/líquido cefalorraquídeo , Enfermedades de los Monos/genética , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/genética , Neuroimagen/métodos , Tamaño de los Órganos , Linaje , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/genética , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
7.
Nat Genet ; 49(12): 1714-1721, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29083405

RESUMEN

By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.


Asunto(s)
Chlorocebus aethiops/genética , Perfilación de la Expresión Génica , Variación Genética , Sitios de Carácter Cuantitativo/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Chlorocebus aethiops/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
8.
Microb Biotechnol ; 10(5): 1152-1156, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28736865

RESUMEN

The growth of microbial biofilms and various biomineralization phenomena can lead to the formation of stable layers and veneers on rocks known as 'rock varnishes' that can stabilize surfaces and protect from further weathering. This article describes the potential application of fungal systems for bioprotection of rock and mineral-based substrates and the evidence to support this concept of utilizing natural or engineered colonization and metabolic properties of fungi, including lichens.


Asunto(s)
Hongos/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Ecosistema , Planificación Ambiental , Hongos/metabolismo , Sedimentos Geológicos/química , Líquenes/crecimiento & desarrollo , Líquenes/metabolismo , Minerales/metabolismo
9.
Genetics ; 207(1): 75-82, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739658

RESUMEN

Inferring relatedness from genomic data is an essential component of genetic association studies, population genetics, forensics, and genealogy. While numerous methods exist for inferring relatedness, thorough evaluation of these approaches in real data has been lacking. Here, we report an assessment of 12 state-of-the-art pairwise relatedness inference methods using a data set with 2485 individuals contained in several large pedigrees that span up to six generations. We find that all methods have high accuracy (92-99%) when detecting first- and second-degree relationships, but their accuracy dwindles to <43% for seventh-degree relationships. However, most identical by descent (IBD) segment-based methods inferred seventh-degree relatives correct to within one relatedness degree for >76% of relative pairs. Overall, the most accurate methods are Estimation of Recent Shared Ancestry (ERSA) and approaches that compute total IBD sharing using the output from GERMLINE and Refined IBD to infer relatedness. Combining information from the most accurate methods provides little accuracy improvement, indicating that novel approaches, such as new methods that leverage relatedness signals from multiple samples, are needed to achieve a sizeable jump in performance.


Asunto(s)
Benchmarking/métodos , Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Linaje , Población/genética , Benchmarking/normas , Genoma Humano , Estudio de Asociación del Genoma Completo/normas , Técnicas de Genotipaje/normas , Humanos , Modelos Genéticos
10.
Eur Heart J ; 38(48): 3579-3587, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28655204

RESUMEN

Aims: The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results: Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion: We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Aterosclerosis/genética , Proteínas Portadoras/genética , HDL-Colesterol/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Transportador 1 de Casete de Unión a ATP/biosíntesis , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteínas Portadoras/biosíntesis , Línea Celular , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/biosíntesis , ARN/genética
11.
BMC Genet ; 18(1): 48, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28525987

RESUMEN

BACKGROUND: Differential plasma concentrations of circulating lipid species are associated with pathogenesis of type 2 diabetes (T2D). Whether the wide inter-individual variability in the plasma lipidome contributes to the genetic basis of T2D is unknown. Here, we investigated the potential overlap in the genetic basis of the plasma lipidome and T2D-related traits. RESULTS: We used plasma lipidomic data (1202 pedigreed individuals, 319 lipid species representing 23 lipid classes) from San Antonio Family Heart Study in Mexican Americans. Bivariate trait analyses were used to estimate the genetic and environmental correlation of all lipid species with three T2D-related traits: risk of T2D, presence of prediabetes and homeostatic model of assessment - insulin resistance. We found that 44 lipid species were significantly genetically correlated with one or more of the three T2D-related traits. Majority of these lipid species belonged to the diacylglycerol (DAG, 17 species) and triacylglycerol (TAG, 17 species) classes. Six lipid species (all belonging to the triacylglycerol class and containing palmitate at the first position) were significantly genetically correlated with all the T2D-related traits. CONCLUSIONS: Our results imply that: a) not all plasma lipid species are genetically informative for T2D pathogenesis; b) the DAG and TAG lipid classes partially share genetic basis of T2D; and c) 1-palmitate containing TAGs may provide additional insights into the genetic basis of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/genética , Lípidos/sangre , Americanos Mexicanos/genética , Estado Prediabético/genética , Carácter Cuantitativo Heredable , Adulto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etnología , Femenino , Interacción Gen-Ambiente , Humanos , Resistencia a la Insulina/etnología , Masculino , Estado Prediabético/sangre , Estado Prediabético/etnología
12.
Addiction ; 112(1): 113-123, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27517884

RESUMEN

BACKGROUND AND AIMS: While the prevalence of major depression is elevated among cannabis users, the role of genetics in this pattern of comorbidity is not clear. This study aimed to estimate the heritability of cannabis use and major depression, quantify the genetic overlap between these two traits and localize regions of the genome that segregate in families with cannabis use and major depression. DESIGN: Family-based univariate and bivariate genetic analysis. SETTING: San Antonio, Texas, USA. PARTICIPANTS: Genetics of Brain Structure and Function study (GOBS) participants: 1284 Mexican Americans from 75 large multi-generation families and an additional 57 genetically unrelated spouses. MEASUREMENTS: Phenotypes of life-time history of cannabis use and major depression, measured using the semistructured MINI-Plus interview. Genotypes measured using ~1 M single nucleotide polymorphisms (SNPs) on Illumina BeadChips. A subselection of these SNPs were used to build multi-point identity-by-descent matrices for linkage analysis. FINDINGS: Both cannabis use [h2  = 0.614, P = 1.00 × 10-6 , standard error (SE) = 0.151] and major depression (h2  = 0.349, P = 1.06 × 10-5 , SE = 0.100) are heritable traits, and there is significant genetic correlation between the two (ρg  = 0.424, P = 0.0364, SE = 0.195). Genome-wide linkage scans identify a significant univariate linkage peak for major depression on chromosome 22 [logarithm of the odds (LOD) = 3.144 at 2 centimorgans (cM)], with a suggestive peak for cannabis use on chromosome 21 (LOD = 2.123 at 37 cM). A significant pleiotropic linkage peak influencing both cannabis use and major depression was identified on chromosome 11 using a bivariate model (LOD = 3.229 at 112 cM). Follow-up of this pleiotropic signal identified a SNP 20 kb upstream of NCAM1 (rs7932341) that shows significant bivariate association (P = 3.10 × 10-5 ). However, this SNP is rare (seven minor allele carriers) and does not drive the linkage signal observed. CONCLUSIONS: There appears to be a significant genetic overlap between cannabis use and major depression among Mexican Americans, a pleiotropy that appears to be localized to a region on chromosome 11q23 that has been linked previously to these phenotypes.


Asunto(s)
Trastorno Depresivo Mayor/epidemiología , Predisposición Genética a la Enfermedad/epidemiología , Abuso de Marihuana/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Comorbilidad , Trastorno Depresivo Mayor/genética , Etnicidad/psicología , Etnicidad/estadística & datos numéricos , Femenino , Humanos , Masculino , Abuso de Marihuana/genética , Persona de Mediana Edad , Texas/epidemiología , Adulto Joven
13.
Genet Epidemiol ; 41(3): 174-186, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27943406

RESUMEN

Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is freely available for Macintosh, Linux, and Windows platforms from http://genetics.ucla.edu/software/mendel.


Asunto(s)
Ligamiento Genético , Genoma Humano , Estudio de Asociación del Genoma Completo , Linaje , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Humanos , Modelos Genéticos , Modelos Estadísticos , Programas Informáticos
14.
Nat Genet ; 49(1): 125-130, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27918534

RESUMEN

Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10-8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.


Asunto(s)
Adipocitos/citología , Distribución de la Grasa Corporal , Diferenciación Celular , Sitios Genéticos/genética , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Adipocitos/metabolismo , Animales , Estudios de Cohortes , Etnicidad/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fenotipo
15.
BMC Proc ; 10(Suppl 7): 71-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980614

RESUMEN

BACKGROUND: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of statistical genetic methods and software. Each contribution to the workshop includes an application to a specified data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and transcriptomic data. METHODS: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression, systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed based on the real sequence data. 'Functional' genes and variants for the simulations were chosen based on observed correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic models but also included a genotype-by-medication interaction. A total of 245 genes were designated as 'functional' in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or the set of 1943 unrelated individuals with exome sequence.

16.
BMC Proc ; 10(Suppl 7): 245-249, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980644

RESUMEN

The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies.

17.
J Diabetes Res ; 2016: 6463214, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27896278

RESUMEN

SLC30A8 encodes zinc transporter 8 which is involved in packaging and release of insulin. Evidence for the association of SLC30A8 variants with type 2 diabetes (T2D) is inconclusive. We interrogated single nucleotide polymorphisms (SNPs) around SLC30A8 for association with T2D in high-risk, pedigreed individuals from extended Mexican American families. This study of 118 SNPs within 50 kb of the SLC30A8 locus tested the association with eight T2D-related traits at four levels: (i) each SNP using measured genotype approach (MGA); (ii) interaction of SNPs with age and sex; (iii) combinations of SNPs using Bayesian Quantitative Trait Nucleotide (BQTN) analyses; and (iv) entire gene locus using the gene burden test. Only one SNP (rs7817754) was significantly associated with incident T2D but a summary statistic based on all T2D-related traits identified 11 novel SNPs. Three SNPs and one SNP were weakly but interactively associated with age and sex, respectively. BQTN analyses could not demonstrate any informative combination of SNPs over MGA. Lastly, gene burden test results showed that at best the SLC30A8 locus could account for only 1-2% of the variability in T2D-related traits. Our results indicate a lack of association of the SLC30A8 SNPs with T2D in Mexican American families.


Asunto(s)
Proteínas de Transporte de Catión/genética , Diabetes Mellitus Tipo 2/genética , Americanos Mexicanos/genética , Adulto , Teorema de Bayes , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Incidencia , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Prevalencia , Transportador 8 de Zinc
18.
Lipids Health Dis ; 15: 67, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27044508

RESUMEN

BACKGROUND: Detection of type 2 diabetes (T2D) is routinely based on the presence of dysglycemia. Although disturbed lipid metabolism is a hallmark of T2D, the potential of plasma lipidomics as a biomarker of future T2D is unknown. Our objective was to develop and validate a plasma lipidomic risk score (LRS) as a biomarker of future type 2 diabetes and to evaluate its cost-effectiveness for T2D screening. METHODS: Plasma LRS, based on significantly associated lipid species from an array of 319 lipid species, was developed in a cohort of initially T2D-free individuals from the San Antonio Family Heart Study (SAFHS). The LRS derived from SAFHS as well as its recalibrated version were validated in an independent cohort from Australia--the AusDiab cohort. The participants were T2D-free at baseline and followed for 9197 person-years in the SAFHS cohort (n = 771) and 5930 person-years in the AusDiab cohort (n = 644). Statistically and clinically improved T2D prediction was evaluated with established statistical parameters in both cohorts. Modeling studies were conducted to determine whether the use of LRS would be cost-effective for T2D screening. The main outcome measures included accuracy and incremental value of the LRS over routinely used clinical predictors of T2D risk; validation of these results in an independent cohort and cost-effectiveness of including LRS in screening/intervention programs for T2D. RESULTS: The LRS was based on plasma concentration of dihydroceramide 18:0, lysoalkylphosphatidylcholine 22:1 and triacyglycerol 16:0/18:0/18:1. The score predicted future T2D independently of prediabetes with an accuracy of 76%. Even in the subset of initially euglycemic individuals, the LRS improved T2D prediction. In the AusDiab cohort, the LRS continued to predict T2D significantly and independently. When combined with risk-stratification methods currently used in clinical practice, the LRS significantly improved the model fit (p < 0.001), information content (p < 0.001), discrimination (p < 0.001) and reclassification (p < 0.001) in both cohorts. Modeling studies demonstrated that LRS-based risk-stratification combined with metformin supplementation for high-risk individuals was the most cost-effective strategy for T2D prevention. CONCLUSIONS: Considering the novelty, incremental value and cost-effectiveness of LRS it should be used for risk-stratification of future T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/economía , Lípidos/sangre , Biomarcadores/sangre , Estudios de Cohortes , Análisis Costo-Beneficio , Diabetes Mellitus Tipo 2/etiología , Humanos , Resistencia a la Insulina , Reproducibilidad de los Resultados , Factores de Riesgo
19.
PLoS One ; 11(3): e0151177, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27007680

RESUMEN

OBJECTIVE: While the role of type 2 diabetes (T2D) in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vessel cell adhesion molecule 1 (sVCAM-1) with incident T2D. METHODS: Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indexes. RESULTS: Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT) individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment--insulin resistance (HOMA-IR). Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low values for both sICAM-1 and sVCAM-1. The results were similar in women in reproductive age group and the remainder of the cohort. Inclusion of sICAM-1 and sVCAM-1 in predictive models significantly improved reclassification and discrimination. The majority of these results were seen even when the analyses were restricted to NGT individuals. CONCLUSION: Serum concentrations of sICAM-1 and sVCAM-1 independently and additively predict future T2D and represent important candidate biomarkers of T2D.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Diabetes Mellitus Tipo 2/patología , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Resistencia a la Insulina , Estudios Longitudinales , Masculino , Menstruación , Americanos Mexicanos , Texas
20.
Clin Epigenetics ; 8: 6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26798409

RESUMEN

BACKGROUND: There is growing interest in the hypertriglyceridemic waist (HTGW) phenotype, defined as high waist circumference (≥95 cm in males and ≥80 cm in females) combined with high serum triglyceride concentration (≥2.0 mmol/L in males and ≥1.5 mmol/L in females) as a marker of type 2 diabetes (T2D) and cardiovascular disease. However, the prevalence of this phenotype in high-risk populations, its association with T2D, and the genetic or epigenetic influences on HTGW are not well explored. Using data from large, extended families of Mexican Americans (a high-risk minority population in the USA) we aimed to: (1) estimate the prevalence of this phenotype, (2) test its association with T2D and related traits, and (3) dissect out the genetic and epigenetic associations with this phenotype using genome-wide and epigenome-wide studies, respectively. RESULTS: Data for this study was from 850 Mexican American participants (representing 39 families) recruited under the ongoing San Antonio Family Heart Study, 26 % of these individuals had HTGW. This phenotype was significantly heritable (h (2) r = 0.52, p = 1.1 × 10(-5)) and independently associated with T2D as well as fasting glucose levels and insulin resistance. We conducted genome-wide association analyses using 759,809 single nucleotide polymorphisms (SNPs) and epigenome-wide association analyses using 457,331 CpG sites. There was no evidence of any SNP associated with HTGW at the genome-wide level but two CpG sites (cg00574958 and cg17058475) in CPT1A and one CpG site (cg06500161) in ABCG1 were significantly associated with HTGW and remained significant after adjusting for the closely related components of metabolic syndrome. CPT1A holds a cardinal position in the metabolism of long-chain fatty acids while ABCG1 plays a role in triglyceride metabolism. CONCLUSIONS: Our results reemphasize the value of HTGW as a marker of T2D. This phenotype shows association with DNA methylation within CPT1A and ABCG1, genes involved in fatty acid and triglyceride metabolism. Our results underscore the importance of epigenetics in a clinically informative phenotype.


Asunto(s)
Epigénesis Genética , Hipertrigliceridemia/genética , Americanos Mexicanos/genética , Circunferencia de la Cintura/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Diabetes Mellitus Tipo 2/genética , Epigenómica , Familia , Femenino , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...