Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neuroinformatics ; 21(1): 89-100, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520344

RESUMEN

We previously proposed a structure for recording consent-based data use 'categories' and 'requirements' - Consent Codes - with a view to supporting maximum use and integration of genomic research datasets, and reducing uncertainty about permissible re-use of shared data. Here we discuss clarifications and subsequent updates to the Consent Codes (v4) based on new areas of application (e.g., the neurosciences, biobanking, H3Africa), policy developments (e.g., return of research results), and further practical considerations, including developments in automated approaches to consent management.


Asunto(s)
Bancos de Muestras Biológicas , Consentimiento Informado , Ecosistema , Genómica
2.
Neuroinformatics ; 20(1): 139-153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34003431

RESUMEN

In January 2016, the Montreal Neurological Institute-Hospital (The Neuro) declared itself an Open Science organization. This vision extends beyond efforts by individual scientists seeking to release individual datasets, software tools, or building platforms that provide for the free dissemination of such information. It involves multiple stakeholders and an infrastructure that considers governance, ethics, computational resourcing, physical design, workflows, training, education, and intra-institutional reporting structures. The C-BIG repository was built in response as The Neuro's institutional biospecimen and clinical data repository, and collects biospecimens as well as clinical, imaging, and genetic data from patients with neurological disease and healthy controls. It is aimed at helping scientific investigators, in both academia and industry, advance our understanding of neurological diseases and accelerate the development of treatments. As many neurological diseases are quite rare, they present several challenges to researchers due to their small patient populations. Overcoming these challenges required the aggregation of datasets from various projects and locations. The C-BIG repository achieves this goal and stands as a scalable working model for institutions to collect, track, curate, archive, and disseminate multimodal data from patients. In November 2020, a Registered Access layer was made available to the wider research community at https://cbigr-open.loris.ca , and in May 2021 fully open data will be released to complement the Registered Access data. This article outlines many of the aspects of The Neuro's transition to Open Science by describing the data to be released, C-BIG's full capabilities, and the design aspects that were implemented for effective data sharing.


Asunto(s)
Difusión de la Información , Programas Informáticos , Humanos
3.
Cell Genom ; 1(2): None, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34820659

RESUMEN

Human biomedical datasets that are critical for research and clinical studies to benefit human health also often contain sensitive or potentially identifying information of individual participants. Thus, care must be taken when they are processed and made available to comply with ethical and regulatory frameworks and informed consent data conditions. To enable and streamline data access for these biomedical datasets, the Global Alliance for Genomics and Health (GA4GH) Data Use and Researcher Identities (DURI) work stream developed and approved the Data Use Ontology (DUO) standard. DUO is a hierarchical vocabulary of human and machine-readable data use terms that consistently and unambiguously represents a dataset's allowable data uses. DUO has been implemented by major international stakeholders such as the Broad and Sanger Institutes and is currently used in annotation of over 200,000 datasets worldwide. Using DUO in data management and access facilitates researchers' discovery and access of relevant datasets. DUO annotations increase the FAIRness of datasets and support data linkages using common data use profiles when integrating the data for secondary analyses. DUO is implemented in the Web Ontology Language (OWL) and, to increase community awareness and engagement, hosted in an open, centralized GitHub repository. DUO, together with the GA4GH Passport standard, offers a new, efficient, and streamlined data authorization and access framework that has enabled increased sharing of biomedical datasets worldwide.

4.
Cell Genom ; 1(2): None, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34820660

RESUMEN

The Global Alliance for Genomics and Health (GA4GH) supports international standards that enable a federated data sharing model for the research community while respecting data security, ethical and regulatory frameworks, and data authorization and access processes for sensitive data. The GA4GH Passport standard (Passport) defines a machine-readable digital identity that conveys roles and data access permissions (called "visas") for individual users. Visas are issued by data stewards, including data access committees (DACs) working with public databases, the entities responsible for the quality, integrity, and access arrangements for the datasets in the management of human biomedical data. Passports streamline management of data access rights across data systems by using visas that present a data user's digital identity and permissions across organizations, tools, environments, and services. We describe real-world implementations of the GA4GH Passport standard in use cases from ELIXIR Europe, National Institutes of Health, and the Autism Sharing Initiative. These implementations demonstrate that the Passport standard has provided transparent mechanisms for establishing permissions and authorizing data access across platforms.

5.
PLoS One ; 16(11): e0258646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34748551

RESUMEN

Despite the plethora of empirical studies conducted to date, debate continues about whether and to what extent results should be returned to participants of genomic research. We aimed to systematically review the empirical literature exploring stakeholders' perspectives on return of individual research results (IRR) from genomic research. We examined preferences for receiving or willingness to return IRR, and experiences with either receiving or returning them. The systematic searches were conducted across five major databases in August 2018 and repeated in April 2020, and included studies reporting findings from primary research regardless of method (quantitative, qualitative, mixed). Articles that related to the clinical setting were excluded. Our search identified 221 articles that met our search criteria. This included 118 quantitative, 69 qualitative and 34 mixed methods studies. These articles included a total number of 118,874 stakeholders with research participants (85,270/72%) and members of the general public (40,967/35%) being the largest groups represented. The articles spanned at least 22 different countries with most (144/65%) being from the USA. Most (76%) discussed clinical research projects, rather than biobanks. More than half (58%) gauged views that were hypothetical. We found overwhelming evidence of high interest in return of IRR from potential and actual genomic research participants. There is also a general willingness to provide such results by researchers and health professionals, although they tend to adopt a more cautious stance. While all results are desired to some degree, those that have the potential to change clinical management are generally prioritized by all stakeholders. Professional stakeholders appear more willing to return results that are reliable and clinically relevant than those that are less reliable and lack clinical relevance. The lack of evidence for significant enduring psychological harm and the clear benefits to some research participants suggest that researchers should be returning actionable IRRs to participants.


Asunto(s)
Investigación Biomédica , Genómica , Participación de los Interesados/psicología , Genoma Humano/genética , Medicina Genómica , Personal de Salud/psicología , Genética Humana/normas , Humanos , Factores de Riesgo
6.
Neuroimage Clin ; 31: 102733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34192666

RESUMEN

To move Alzheimer Disease (AD) research forward it is essential to collect data from large cohorts, but also make such data available to the global research community. We describe the creation of an open science dataset from the PREVENT-AD (PResymptomatic EValuation of Experimental or Novel Treatments for AD) cohort, composed of cognitively unimpaired older individuals with a parental or multiple-sibling history of AD. From 2011 to 2017, 386 participants were enrolled (mean age 63 years old ± 5) for sustained investigation among whom 349 have retrospectively agreed to share their data openly. Repositories are findable through the unified interface of the Canadian Open Neuroscience Platform and contain up to five years of longitudinal imaging data, cerebral fluid biochemistry, neurosensory capacities, cognitive, genetic, and medical information. Imaging data can be accessed openly at https://openpreventad.loris.ca while most of the other information, sensitive by nature, is accessible by qualified researchers at https://registeredpreventad.loris.ca. In addition to being a living resource for continued data acquisition, PREVENT-AD offers opportunities to facilitate understanding of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Canadá , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Proteínas tau
7.
Cell Genom ; 1(2)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35072136

RESUMEN

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.

8.
Environ Epigenet ; 6(1): dvaa015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240528

RESUMEN

Given the public interest in epigenetic science, this study aimed to better understand media representations of epigenetics in national newspaper coverage in various regions in North America, Europe, and Asia. Content analysis was used to study media messages about epigenetics, their policy focus, and the balance of the reporting. We identified several recurring themes in the news reports, including policy messages relating to individual and societal responsibilities. We also found shortcomings in the media's portrayal of epigenetic science, and sought to identify potential causes by considering the underlying scientific evidence that the media reported on. A case study analysis showed that the results of epigenetic studies were often overstated in academic research publications due to common experimental limitations. We suggest that defining standardized criteria with which to evaluate epigenetic studies could help to overcome some of the challenges inherent in translating complex epigenetic research findings for non-technical audiences, and present a Press Kit template that researchers can adapt and use to aid in the development of accurate and balanced press releases.

10.
Genome Med ; 11(1): 31, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122281

RESUMEN

As epigenetic studies become more common and lead to new insights into health and disease, the return of individual epigenetic results to research participants, in particular in large-scale epigenomic studies, will be of growing importance. Members of the International Human Epigenome Consortium (IHEC) Bioethics Workgroup considered the potential ethical, legal, and social issues (ELSI) involved in returning epigenetic research results and incidental findings in order to produce a set of 'Points-to-consider' (P-t-C) for the epigenetics research community. These P-t-C draw on existing guidance on the return of genetic research results, while also integrating the IHEC Bioethics Workgroup's ELSI research on and discussion of the issues associated with epigenetic data as well as the experience of a return of results pilot study by the Personal Genome Project UK (PGP-UK). Major challenges include how to determine the clinical validity and actionability of epigenetic results, and considerations related to environmental exposures and epigenetic marks, including circumstances warranting the sharing of results with family members and third parties. Interdisciplinary collaboration and good public communication regarding epigenetic risk will be important to advance the return of results framework for epigenetic science.


Asunto(s)
Epigénesis Genética , Epigenómica/ética , Guías de Práctica Clínica como Asunto , Discusiones Bioéticas , Epigenómica/normas , Pruebas Genéticas/normas , Humanos , Hallazgos Incidentales
12.
Nat Biotechnol ; 37(4): 480, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30894680

RESUMEN

In the version of this article initially published, Lena Dolman's second affiliation was given as Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. The correct second affiliation is Ontario Institute for Cancer Research, Toronto, Ontario, Canada. The error has been corrected in the HTML and PDF versions of the article.

13.
Genet Med ; 21(5): 1031-1037, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30293992

RESUMEN

Access to detailed variant data is key to inform and verify the interpretation of genomic data. Clinical laboratories can play a significant role in sharing patients' data through public variant databases. To facilitate data sharing, various public databases, such as ClinVar and DECIPHER have been established, which accept data submission from laboratories, clinicians, researchers, and patients. Despite clear benefits to sharing, questions may arise about the adequate form of consent to be obtained from patients when sharing data from their clinical tests through public databases. In this paper, we provide an overview and critical analysis of the relevant consent policies of the major public databases, and of the consent forms of clinical laboratories that share variant data via ClinVar.


Asunto(s)
Privacidad Genética , Difusión de la Información , Laboratorios , Formularios de Consentimiento , Bases de Datos Genéticas , Consentimiento Informado , Política Pública
14.
PLoS Genet ; 14(12): e1007752, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586411

RESUMEN

The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project's outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases-Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)-as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2.


Asunto(s)
Bases de Datos Genéticas , Genes BRCA1 , Genes BRCA2 , Variación Genética , Alelos , Neoplasias de la Mama/genética , Bases de Datos Genéticas/ética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/ética , Difusión de la Información/legislación & jurisprudencia , Masculino , Mutación , Neoplasias Ováricas/genética , Penetrancia , Fenotipo , Factores de Riesgo
15.
NPJ Genom Med ; 3: 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30062047

RESUMEN

Given the data-rich nature of modern biomedical research, there is a pressing need for a systematic, structured, computer-readable way to capture, communicate, and manage sharing rules that apply to biomedical resources. This is essential for responsible recording, versioning, communication, querying, and actioning of resource sharing plans. However, lack of a common "information model" for rules and conditions that govern the sharing of materials, methods, software, data, and knowledge creates a fundamental barrier. Without this, it can be virtually impossible for Research Ethics Committees (RECs), Institutional Review Boards (IRBs), Data Access Committees (DACs), biobanks, and end users to confidently track, manage, and interpret applicable legal and ethical requirements. This raises costs and burdens of data stewardship and decreases efficient and responsible access to data, biospecimens, and other resources. To address this, the GA4GH and IRDiRC organizations sponsored the creation of the Automatable Discovery and Access Matrix (ADA-M, read simply as "Adam"). ADA-M is a comprehensive information model that provides the basis for producing structured metadata "Profiles" of regulatory conditions, thereby enabling efficient application of those conditions across regulatory spheres. Widespread use of ADA-M will aid researchers in globally searching and prescreening potential data and/or biospecimen resources for compatibility with their research plans in a responsible and efficient manner, increasing likelihood of timely DAC approvals while also significantly reducing time and effort DACs, RECs, and IRBs spend evaluating resource requests and research proposals. Extensive online documentation, software support, video guides, and an Application Programming Interface (API) for ADA-M have been made available.

16.
Eur J Hum Genet ; 26(12): 1721-1731, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30069064

RESUMEN

The Global Alliance for Genomics and Health (GA4GH) proposes a data access policy model-"registered access"-to increase and improve access to data requiring an agreement to basic terms and conditions, such as the use of DNA sequence and health data in research. A registered access policy would enable a range of categories of users to gain access, starting with researchers and clinical care professionals. It would also facilitate general use and reuse of data but within the bounds of consent restrictions and other ethical obligations. In piloting registered access with the Scientific Demonstration data sharing projects of GA4GH, we provide additional ethics, policy and technical guidance to facilitate the implementation of this access model in an international setting.


Asunto(s)
Acceso a la Información , Genética Médica/normas , Genómica/normas , Difusión de la Información , Genética Médica/ética , Genética Médica/legislación & jurisprudencia , Genómica/ética , Genómica/legislación & jurisprudencia , Humanos , Concesión de Licencias , Guías de Práctica Clínica como Asunto
17.
Sci Data ; 5: 180039, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29537396

RESUMEN

The volume of genomics and health data is growing rapidly, driven by sequencing for both research and clinical use. However, under current practices, the data is fragmented into many distinct datasets, and researchers must go through a separate application process for each dataset. This is time-consuming both for the researchers and the data stewards, and it reduces the velocity of research and new discoveries that could improve human health. We propose to simplify this process, by introducing a standard Library Card that identifies and authenticates researchers across all participating datasets. Each researcher would only need to apply once to establish their bona fides as a qualified researcher, and could then use the Library Card to access a wide range of datasets that use a compatible data access policy and authentication protocol.

18.
Hum Mutat ; 38(10): 1281-1285, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28699299

RESUMEN

The Matchmaker Exchange (MME) connects rare disease clinicians and researchers to facilitate the sharing of data from undiagnosed patients for the purpose of novel gene discovery. Such sharing raises the odds that two or more similar patients with candidate genes in common may be found, thereby allowing their condition to be more readily studied and understood. Consent considerations for data sharing in MME included both the ethical and legal differences between clinical and research settings and the level of privacy risk involved in sharing varying amounts of rare disease patient data to enable patient matches. In this commentary, we discuss these consent considerations and the resulting MME Consent Policy as they may be relevant to other international data sharing initiatives.


Asunto(s)
Estudios de Asociación Genética , Enfermedades Genéticas Congénitas , Difusión de la Información , Enfermedades Raras/genética , Bases de Datos Genéticas , Genómica , Humanos , Selección de Paciente , Médicos , Investigadores , Investigación Biomédica Traslacional
19.
Am J Hum Genet ; 100(5): 695-705, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475856

RESUMEN

Provision of a molecularly confirmed diagnosis in a timely manner for children and adults with rare genetic diseases shortens their "diagnostic odyssey," improves disease management, and fosters genetic counseling with respect to recurrence risks while assuring reproductive choices. In a general clinical genetics setting, the current diagnostic rate is approximately 50%, but for those who do not receive a molecular diagnosis after the initial genetics evaluation, that rate is much lower. Diagnostic success for these more challenging affected individuals depends to a large extent on progress in the discovery of genes associated with, and mechanisms underlying, rare diseases. Thus, continued research is required for moving toward a more complete catalog of disease-related genes and variants. The International Rare Diseases Research Consortium (IRDiRC) was established in 2011 to bring together researchers and organizations invested in rare disease research to develop a means of achieving molecular diagnosis for all rare diseases. Here, we review the current and future bottlenecks to gene discovery and suggest strategies for enabling progress in this regard. Each successful discovery will define potential diagnostic, preventive, and therapeutic opportunities for the corresponding rare disease, enabling precision medicine for this patient population.


Asunto(s)
Cooperación Internacional , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Bases de Datos Factuales , Exoma , Genoma Humano , Humanos
20.
Facets (Ott) ; 1(1): 138-147, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27990475

RESUMEN

In setting up a data access policy to share controlled access data from the McGill Epigenomics Mapping Centre (EMC), an International Human Epigenome Consortium (IHEC) partner project, we encountered ethical and legal challenges that are likely to be relevant to other researchers sharing data, especially from Canadian projects. We discuss our solutions to the following data-sharing challenges, based on comparative legal and policy analysis: (1) providing access to data to a growing number of researchers; (2) maintaining Canadian privacy standards while sharing controlled access data internationally; (3) freedom of information requests; and (4) providing more incentives for researchers to share pre-publication data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...