Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35803737

RESUMEN

Clustering of supernumerary centrosomes, which potentially leads to cell survival and chromosomal instability, is frequently observed in cancers. However, the molecular mechanisms that control centrosome clustering remain largely unknown. The centrosomal kinesin KIF24 was previously shown to restrain the assembly of primary cilia in mammalian cells. Here, we revealed that KIF24 depletion suppresses multipolar spindle formation by clustering centrosomes in pancreatic ductal adenocarcinoma (PDAC) cells harboring supernumerary centrosomes. KIF24 depletion also induced hyper-proliferation and improved mitotic progression in PDAC cells. In contrast, disruption of primary cilia failed to affect the proliferation and spindle formation in KIF24-depleted cells. These results suggest a novel role for KIF24 in suppressing centrosome clustering independent of primary ciliation in centrosome-amplified PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático , Centrosoma/fisiología , Cinesinas/metabolismo , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Supervivencia Celular/fisiología , Análisis por Conglomerados , Cinesinas/genética , Mamíferos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Huso Acromático/genética
2.
Nat Commun ; 11(1): 6222, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277476

RESUMEN

Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Células Madre Embrionarias de Ratones/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Cromatina/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Ratones , Músculo Esquelético/citología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(29): 14583-14592, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31249142

RESUMEN

Elongation factor Paf1C regulates several stages of the RNA polymerase II (Pol II) transcription cycle, although it is unclear how it modulates Pol II distribution and progression in mammalian cells. We found that conditional ablation of Paf1 resulted in the accumulation of unphosphorylated and Ser5 phosphorylated Pol II around promoter-proximal regions and within the first 20 to 30 kb of gene bodies, respectively. Paf1 ablation did not impact the recruitment of other key elongation factors, namely, Spt5, Spt6, and the FACT complex, suggesting that Paf1 function may be mechanistically distinguishable from each of these factors. Moreover, loss of Paf1 triggered an increase in TSS-proximal nucleosome occupancy, which could impose a considerable barrier to Pol II elongation past TSS-proximal regions. Remarkably, accumulation of Ser5P in the first 20 to 30 kb coincided with reductions in histone H2B ubiquitylation within this region. Furthermore, we show that nascent RNA species accumulate within this window, suggesting a mechanism whereby Paf1 loss leads to aberrant, prematurely terminated transcripts and diminution of full-length transcripts. Importantly, we found that loss of Paf1 results in Pol II elongation rate defects with significant rate compression. Our findings suggest that Paf1C is critical for modulating Pol II elongation rates by functioning beyond the pause-release step as an "accelerator" over specific early gene body regions.


Asunto(s)
Proteínas Portadoras/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Terminación de la Transcripción Genética , Animales , Sistemas CRISPR-Cas/genética , Proteínas Portadoras/genética , Línea Celular , Técnicas de Inactivación de Genes , Histonas/metabolismo , Ratones , Mioblastos , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/metabolismo , Ubiquitinación/genética
4.
EMBO Rep ; 18(2): 334-343, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28028031

RESUMEN

Loss of primary cilia is frequently observed in tumor cells, including pancreatic ductal adenocarcinoma (PDAC) cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction and the inability to exit the cell cycle. However, the molecular mechanisms that explain how PDAC cells lose primary cilia are still ambiguous. In this study, we found that inhibition or silencing of histone deacetylase 2 (HDAC2) restores primary cilia formation in PDAC cells. Inactivation of HDAC2 results in decreased Aurora A expression, which promotes disassembly of primary cilia. We further showed that HDAC2 controls ciliogenesis independently of Kras, which facilitates Aurora A expression. These studies suggest that HDAC2 is a novel regulator of primary cilium formation in PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Cilios/metabolismo , Cilios/patología , Histona Desacetilasa 2/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Aurora Quinasa A/metabolismo , Biomarcadores , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Cilios/efectos de los fármacos , Genes ras , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Transducción de Señal , Neoplasias Pancreáticas
5.
Cell Rep ; 17(6): 1505-1517, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806291

RESUMEN

Intraflagellar transport sub-complex A (IFT-A) is known to regulate retrograde IFT in the cilium. To rigorously assess its other possible roles, we knocked out an IFT-A subunit, IFT121/WDR35, in mammalian cells and screened the localization of more than 50 proteins. We found that Wdr35 regulates cilium assembly by selectively regulating transport of distinct cargoes. Beyond its role in retrograde transport, we show that Wdr35 functions in fusion of Rab8 vesicles at the nascent cilium, protein exit from the cilium, and centriolar satellite organization. Furthermore, we show that Wdr35 is essential for entry of many membrane proteins into the cilium through robust interactions with cargoes and other IFT-A subunits, but the actin network functions to dampen this transport. Wdr35 is mutated in several ciliopathies, and we find that certain disease mutations impair interactions with cargo and other IFT-A subunits. Together, our data link defects in IFT-A mediated cargo transport with disease.


Asunto(s)
Cilios/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Cilios/efectos de los fármacos , Citocalasina D/farmacología , Proteínas del Citoesqueleto , Proteínas Hedgehog , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Mutación/genética , Organogénesis/efectos de los fármacos , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos
6.
Nat Cell Biol ; 18(7): 711-7, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350441

RESUMEN

The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention.


Asunto(s)
Calcio/metabolismo , Ciclo Celular/fisiología , Cilios/metabolismo , Neoplasias/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Morfogénesis/fisiología
7.
Nat Commun ; 6: 8087, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26290419

RESUMEN

Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization.


Asunto(s)
Cilios/fisiología , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Carcinogénesis , Ciclo Celular , Línea Celular Tumoral , Regulación de la Expresión Génica/fisiología , Humanos , Cinesinas/genética , Quinasas Relacionadas con NIMA , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
8.
Cell Rep ; 10(5): 664-673, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25660017

RESUMEN

The primary cilium is an antenna-like, microtubule-based organelle on the surface of most vertebrate cells for receiving extracellular information. Although primary cilia form in the quiescent phase, ciliary disassembly occurs when quiescent cells re-enter the proliferative phase. It was shown that a mitotic kinase, Polo-like kinase 1 (PLK1), is required for cell-proliferation-coupled primary cilia disassembly. Here, we report that kinesin superfamily protein 2A (KIF2A), phosphorylated at T554 by PLK1, exhibits microtubule-depolymerizing activity at the mother centriole to disassemble the primary cilium in a growth-signal-dependent manner. KIF2A-deficient hTERT-RPE1 cells showed the impairment of primary cilia disassembly following growth stimulation. It was also found that the PLK1-KIF2A pathway is constitutively active in cells from patients with premature chromatid separation (PCS) syndrome and is responsible for defective ciliogenesis in this syndrome. These findings provide insights into the roles of the PLK1-KIF2A pathway in physiological cilia disassembly and cilia-associated disorders.

9.
Nat Cell Biol ; 16(12): 1202-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25402684

RESUMEN

Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Forkhead/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Animales , Autofagia/genética , Sitios de Unión , Línea Celular , Fibroblastos/citología , Fibroblastos/patología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ratones , Mioblastos/citología , Mioblastos/patología , Estado Nutricional/fisiología , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética , Complejo Correpresor Histona Desacetilasa y Sin3 , Serina-Treonina Quinasas TOR/genética , Activación Transcripcional
10.
Proc Natl Acad Sci U S A ; 111(25): 9151-6, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927541

RESUMEN

The primary cilium acts as a cellular antenna, transducing diverse signaling pathways, and recent evidence suggests that primary cilia are important in development and cancer. However, a role for cilia in normal muscle development and rhabdomyosarcoma (RMS) has not been explored. Here we implicate primary cilia in proliferation, hedgehog (Hh) signaling, and differentiation of skeletal muscle cells. Cilia and Hh signaling are highly dynamic during the differentiation of myoblasts. We show that cilia are assembled during the initial stages of myogenic differentiation but disappear as cells progress through myogenesis, concomitant with the destruction of proteins critical for cilia assembly and shortly after the Hh effector, Gli3, leaves the cilium. Importantly, we show that ablation of primary cilia strongly suppresses Hh signaling and myogenic differentiation while enhancing proliferation. Interestingly, our data further indicate that both cilia assembly and Hh signaling are deregulated in RMS, and cilia respond to Hh ligand in certain subsets of RMS cells but not others. Together, these findings provide evidence for an essential role for both primary cilia assembly and disassembly in the control of Hh signaling and early differentiation in muscle cells. We suggest that the temporally orchestrated destruction of centrosomal and ciliary proteins is a necessary antecedent for removal of the primary cilium and cessation of Hh signaling during myogenic differentiation. Additionally, our results further stratify RMS populations and highlight cilia assembly and disassembly as potential RMS drug targets.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas de Neoplasias/metabolismo , Rabdomiosarcoma/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Cilios , Proteínas Hedgehog/genética , Humanos , Ratones , Proteínas de Neoplasias/genética , Rabdomiosarcoma/genética
11.
J Cell Biol ; 204(2): 215-29, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24421332

RESUMEN

We have identified Talpid3/KIAA0586 as a component of a CP110-containing protein complex important for centrosome and cilia function. Talpid3 assembles a ring-like structure at the extreme distal end of centrioles. Ablation of Talpid3 resulted in an aberrant distribution of centriolar satellites involved in protein trafficking to centrosomes as well as cilia assembly defects, reminiscent of loss of Cep290, another CP110-associated protein. Talpid3 depletion also led to mislocalization of Rab8a, a small GTPase thought to be essential for ciliary vesicle formation. Expression of activated Rab8a suppressed cilia assembly defects provoked by Talpid3 depletion, suggesting that Talpid3 affects cilia formation through Rab8a recruitment and/or activation. Remarkably, ultrastructural analyses showed that Talpid3 is required for centriolar satellite dispersal, which precedes the formation of mature ciliary vesicles, a process requiring Cep290. These studies suggest that Talpid3 and Cep290 play overlapping and distinct roles in ciliary vesicle formation through regulation of centriolar satellite accretion and Rab8a.


Asunto(s)
Antígenos de Neoplasias/fisiología , Proteínas de Ciclo Celular/fisiología , Cilios/metabolismo , Proteínas de Neoplasias/fisiología , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/química , Centriolos/metabolismo , Cilios/ultraestructura , Proteínas del Citoesqueleto , Proteínas Fluorescentes Verdes/análisis , Células HEK293 , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas de Unión al GTP rab/análisis , Proteínas de Unión al GTP rab/metabolismo
12.
Curr Opin Cell Biol ; 25(4): 506-11, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23747070

RESUMEN

Cilia are evolutionarily conserved, membrane-bound, microtubular projections emanating from the cell surface. They are assembled on virtually all cell types in the human body, with very few exceptions, and several recent reviews have covered the topic in great detail. The cilium is assembled from mature (mother) centrioles or basal bodies, which serve to nucleate growth of axonemes that give rise to two structurally distinct variants, motile and nonmotile cilia. Whereas motile cilia are typically found in large bundles and beat synchronously to generate fluid flow, primary cilia (with the exception of those found at the embryonic node) are generally immotile and are found as solitary organelles. Remarkably, until recently, the primary cilium was considered a vestigial organelle without apparent biological function. However, research over the past decade has established that the primary cilium is capable of transducing essential signaling information from the extracellular milieu. Defects in the cilium, and the structure from which it arises, the basal body, have been shown to cause a spectrum of diseases, ranging from developmental defects to obesity, diabetes, and cancer. Many of these diseases, or ciliopathies, are manifested as genetic syndromes, such as Joubert syndrome, Bardet-Biedel (BBS), Meckel-Gruber (MKS), and Nephronophthisis (NPHP), illustrating the importance of understanding cilium structure and function and the mechanisms required for its assembly. This review focuses primarily on recent advances in our understanding of the regulatory controls governing the assembly and maintenance of the primary cilium.


Asunto(s)
Cilios/metabolismo , Trastornos de la Motilidad Ciliar/patología , Microtúbulos/metabolismo , Animales , Centriolos/metabolismo , Humanos , Transducción de Señal
13.
Nature ; 495(7440): 255-9, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23486064

RESUMEN

Centrosome duplication is critical for cell division, and genome instability can result if duplication is not restricted to a single round per cell cycle. Centrosome duplication is controlled in part by CP110, a centriolar protein that positively regulates centriole duplication while restricting centriole elongation and ciliogenesis. Maintenance of normal CP110 levels is essential, as excessive CP110 drives centrosome over-duplication and suppresses ciliogenesis, whereas its depletion inhibits centriole amplification and leads to highly elongated centrioles and aberrant assembly of cilia in growing cells. CP110 levels are tightly controlled, partly through ubiquitination by the ubiquitin ligase complex SCF(cyclin F) during G2 and M phases of the cell cycle. Here, using human cells, we report a new mechanism for the regulation of centrosome duplication that requires USP33, a deubiquitinating enzyme that is able to regulate CP110 levels. USP33 interacts with CP110 and localizes to centrioles primarily in S and G2/M phases, the periods during which centrioles duplicate and elongate. USP33 potently and specifically deubiquitinates CP110, but not other cyclin-F substrates. USP33 activity antagonizes SCF(cyclin F)-mediated ubiquitination and promotes the generation of supernumerary centriolar foci, whereas ablation of USP33 destabilizes CP110 and thereby inhibits centrosome amplification and mitotic defects. To our knowledge, we have identified the first centriolar deubiquitinating enzyme whose expression regulates centrosome homeostasis by countering cyclin-F-mediated destruction of a key substrate. Our results point towards potential therapeutic strategies for inhibiting tumorigenesis associated with centrosome amplification.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Ciclo Celular , Línea Celular , Centriolos/metabolismo , Ciclinas/metabolismo , Homeostasis , Humanos , Neoplasias/patología , Neoplasias/terapia , Estabilidad Proteica , Proteínas Ligasas SKP Cullina F-box/metabolismo
14.
Cell ; 145(6): 914-25, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21620453

RESUMEN

We have identified a protein, Kif24, that shares homology with the kinesin-13 subfamily of motor proteins and specifically interacts with CP110 and Cep97, centrosomal proteins that play a role in regulating centriolar length and ciliogenesis. Kif24 preferentially localizes to mother centrioles. Loss of Kif24 from cycling cells resulted in aberrant cilia assembly but did not promote growth of abnormally long centrioles, unlike CP110 and Cep97 depletion. We found that loss of Kif24 leads to the disappearance of CP110 from mother centrioles, specifically in cycling cells able to form cilia. Kif24 is able to bind and depolymerize microtubules in vitro. Remarkably, ectopically expressed Kif24 specifically remodels centriolar microtubules without significantly altering cytoplasmic microtubules. Thus, our studies have identified a centriolar kinesin that specifically remodels a subset of microtubules, thereby regulating cilia assembly. These studies also suggest mechanistic differences between the regulation of microtubule elongation associated with centrioles and cilia.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Cinesinas/química , Datos de Secuencia Molecular , Alineación de Secuencia
15.
Proc Natl Acad Sci U S A ; 108(22): E149-58, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21551099

RESUMEN

We have examined changes in the chromatin landscape during muscle differentiation by mapping the genome-wide location of ten key histone marks and transcription factors in mouse myoblasts and terminally differentiated myotubes, providing an exceptionally rich dataset that has enabled discovery of key epigenetic changes underlying myogenesis. Using this compendium, we focused on a well-known repressive mark, histone H3 lysine 27 trimethylation, and identified novel regulatory elements flanking the myogenin gene that function as a key differentiation-dependent switch during myogenesis. Next, we examined the role of Polycomb-mediated H3K27 methylation in gene repression by systematically ablating components of both PRC1 and PRC2 complexes. Surprisingly, we found mechanistic differences between transient and permanent repression of muscle differentiation and lineage commitment genes and observed that the loss of PRC1 and PRC2 components produced opposing differentiation defects. These phenotypes illustrate striking differences as compared to embryonic stem cell differentiation and suggest that PRC1 and PRC2 do not operate sequentially in muscle cells. Our studies of PRC1 occupancy also suggested a "fail-safe" mechanism, whereby PRC1/Bmi1 concentrates at genes specifying nonmuscle lineages, helping to retain H3K27me3 in the face of declining Ezh2-mediated methyltransferase activity in differentiated cells.


Asunto(s)
Epigénesis Genética , Estudio de Asociación del Genoma Completo , Animales , Diferenciación Celular , Cromatina/metabolismo , Células Madre Embrionarias/citología , Histonas/metabolismo , Humanos , Lisina/química , Metilación , Ratones , Desarrollo de Músculos , Músculos/fisiología , Fenotipo , Proteínas del Grupo Polycomb , Proteínas Represoras/metabolismo , Transcripción Genética
16.
Genes Dev ; 23(1): 37-53, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19136625

RESUMEN

Current models posit that E2F transcription factors can be divided into members that either activate or repress transcription, in part through collaboration with the retinoblastoma (pRb) tumor suppressor family. The E2f3 locus encodes E2f3a and E2f3b proteins, and available data suggest that they regulate cell cycle-dependent gene expression through opposing transcriptional activating and repressing activities in growing and quiescent cells, respectively. However, the role, if any, of E2F proteins, and in particular E2f3, in myogenic differentiation is not well understood. Here, we dissect the contributions of E2f3 isoforms and other activating and repressing E2Fs to cell cycle exit and differentiation by performing genome-wide identification of isoform-specific targets. We show that E2f3a and E2f3b target genes are involved in cell growth, lipid metabolism, and differentiation in an isoform-specific manner. Remarkably, using gene silencing, we show that E2f3b, but not E2f3a or other E2F family members, is required for myogenic differentiation, and that this requirement for E2f3b does not depend on pRb. Our functional studies indicate that E2f3b specifically attenuates expression of genes required to promote differentiation. These data suggest how diverse E2F isoforms encoded by a single locus can play opposing roles in cell cycle exit and differentiation.


Asunto(s)
Diferenciación Celular , Factor de Transcripción E2F3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mioblastos/citología , Mioblastos/metabolismo , Animales , Línea Celular , Factores de Transcripción E2F/metabolismo , Factor de Transcripción E2F3/genética , Ratones , Unión Proteica , Isoformas de Proteínas , Proteínas Represoras/metabolismo
17.
Mol Cell ; 32(3): 359-70, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995834

RESUMEN

The multisubunit Sin3 corepressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex and that on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.


Asunto(s)
Silenciador del Gen , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mioblastos/fisiología , Animales , Ciclo Celular , División Celular , Replicación del ADN , Factor de Transcripción E2F4/genética , Factor de Transcripción E2F4/metabolismo , Ratones , Mioblastos/citología , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética , Activación Transcripcional
18.
Dev Cell ; 15(2): 187-97, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18694559

RESUMEN

Primary cilia are nonmotile organelles implicated in signaling and sensory functions. Understanding how primary cilia assemble could shed light on the many human diseases caused by mutations in ciliary proteins. The centrosomal protein CP110 is known to suppress ciliogenesis through an unknown mechanism. Here, we report that CP110 interacts with CEP290--a protein whose deficiency is implicated in human ciliary disease--in a discrete complex separable from other CP110 complexes involved in regulating the centrosome cycle. Ablation of CEP290 prevents ciliogenesis without affecting centrosome function or cell-cycle progression. Interaction with CEP290 is absolutely required for the ability of CP110 to suppress primary cilia formation. Furthermore, CEP290 and CP110 interact with Rab8a, a small GTPase required for cilia assembly. Depletion of CEP290 interferes with localization of Rab8a to centrosomes and cilia. Our results suggest that CEP290 cooperates with Rab8a to promote ciliogenesis and that this function is antagonized by CP110.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Cilios/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Animales , Línea Celular , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Humanos , Ratones , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Proteínas de Unión al GTP rab/metabolismo
19.
Cell Cycle ; 7(11): 1580-6, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18469520

RESUMEN

Mdm2, as the most important negative regulator of p53, plays an important homeostatic role in regulating cell division and the cellular response to DNA damage, oncogenic insult and other forms of cellular stress. We discovered that the DNA damaging agent adriamycin (doxorubicin) induces a novel aberrantly spliced Mdm2 mRNA which incorporates 108 bp of intronic sequence not normally found in the Mdm2 mature mRNA. Accordingly, we term this Mdm2 splice variant Mdm2(+108). Importantly, this insertion introduces in-frame nonsense codons, thus encoding a profoundly truncated mdm2 protein lacking the C-terminal RING finger domain and the E3 ubiquitin ligase activity. A wide range of pharmacological testing revealed that Mdm2(+108) is induced, in mouse and rat cells, in specific response to Adriamycin and actinomycin D, but not other modes of DNA damage. Meanwhile, antibodies against the N-terminal region of mdm2 reveal a marked reduction in detectable mdm2 protein upon Adriamycin treatment, while p53 accumulates to strikingly high levels. We thus conclude that this alternative spicing of Mdm2 may be an important mechanism to facilitate massive accumulation of p53 in response to genotoxic agents.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Daño del ADN , Dactinomicina/farmacología , Doxorrubicina/farmacología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Ratones , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Dev Cell ; 14(3): 320-2, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18331711

RESUMEN

Sgo1 plays a key role in protecting sister chromatid cohesion during mitosis. In this issue of Developmental Cell, Wang et al. describe a shorter splice variant of Sgo1 (sSgo1) that functions specifically in centriole cohesion. sSgo1 may be the "glue" that holds paired centrioles together in an engaged state before their disengagement in late mitosis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Centriolos/fisiología , Adhesividad , Proteínas de Ciclo Celular/genética , Cromátides/fisiología , Proteínas Cromosómicas no Histona/fisiología , Células HeLa , Humanos , Mitosis/fisiología , Modelos Biológicos , Proteínas Nucleares/fisiología , Huso Acromático/fisiología , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA