Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 15(7): 690-698, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31110305

RESUMEN

Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways and valuable sensors for synthetic biology. However, most TCSs remain uncharacterized or difficult to harness for applications. Major challenges are that many TCS output promoters are unknown, subject to cross-regulation, or silent in heterologous hosts. Here, we demonstrate that the two largest families of response regulator DNA-binding domains can be interchanged with remarkable flexibility, enabling the corresponding TCSs to be rewired to synthetic output promoters. We exploit this plasticity to eliminate cross-regulation, un-silence a gram-negative TCS in a gram-positive host, and engineer a system with over 1,300-fold activation. Finally, we apply DNA-binding domain swapping to screen uncharacterized Shewanella oneidensis TCSs in Escherichia coli, leading to the discovery of a previously uncharacterized pH sensor. This work should accelerate fundamental TCS studies and enable the engineering of a large family of genetically encoded sensors with diverse applications.


Asunto(s)
ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética , Shewanella/genética , Shewanella/metabolismo , ADN Bacteriano/genética
2.
Nat Commun ; 9(1): 1433, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650958

RESUMEN

Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ácido Aspártico/análisis , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Fertilizantes/análisis , Histidina Quinasa/genética , Cinética , Ingeniería Metabólica/métodos , Modelos Químicos , Mutación , Nitratos/análisis , Monoéster Fosfórico Hidrolasas/genética , Suelo/química , Ácido Tetratiónico/análisis , Tiosulfatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA