Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Mater Eng ; 29(4): 451-471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282343

RESUMEN

The main advantage of a theoretical approach is essential knowledge of the mechanisms that allow us to comprehend the experimental conditions that we have to fulfill to be able to get the desired results. Based on our research in ultrathin crystal structures performed so far, superlattices, Q-wires and Q-dots, we will consider the materials that can act as carriers for medicines and tagged substances. For this purpose we established a shell-model of ultrathin crystals and investigated their fundamental characteristics. This could be considered as a form of nano-engineering. In this paper we will analyze application of nanomaterials in biomedicine, that is to say we will present the recent accomplishments in basic and clinical nanomedicine. Achieving full potential of nanomedicine may be years or even decades away, however, potential advances in drug delivery, diagnosis, and development of nanotechnology-related drugs start to change the landscape of medicine. Site-specific targeted drug delivery (made possible by the availability of unique delivery platforms, such as dendrimers, nanoparticles and nanoliposomes) and personalized medicines (result of the advance in pharmacogenetics) are just a few concepts on the horizon of research. In this paper, especially, we have analyzed the changes in basic physical properties of spherical-shaped nanoparticles that can be made in several (nano)layers and have, at the same time, multiple applications in medicine. This paper presents a review of our current achievement in the field of theoretical physics of ultrathin films and possible ways to materialize the same in the field of nanopharmacy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Nanotecnología/métodos , Animales , Materiales Biocompatibles/química , Humanos , Nanomedicina , Medicina de Precisión
2.
J Mol Model ; 19(3): 1153-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23149762

RESUMEN

In this article we focused on computational research of sumanenes disubstituted by boron where the two carbon atoms are substituted by two boron atoms. Disubstitution of rim carbon atoms with boron atoms significantly affected the geometry of the bowl. The main stability factors were used to determine the stability of isomers. The most stable, the shallowest and the deepest isomers were subjected to further study of NMR parameters, chemical shielding and NICS, aromaticity, bowl to bowl inversion barrier and NBO/NPA analysis. The introduction of boron atoms significantly affected the above parameters, changing the aromatic nature of rings, reducing bowl to bowl inversion barrier and produced charge transfer. The NICS are correlated with bowl depth having the result that the function of the fourth degree of bowl depth does not only correlate well to the bowl to bowl inversion barrier with bowl depth, but also finely correlates the change of the NICS and NICSzz with bowl depth.


Asunto(s)
Boro/química , Carbono/química , Hidrocarburos Policíclicos Aromáticos/química , Catálisis , Descubrimiento de Drogas , Isomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...