Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(7): 1524-1536, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36866436

RESUMEN

AIMS: Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS: Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1ß secretion by macrophages in the plaque. CONCLUSIONS: We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Animales , Humanos , Ratones , Aterosclerosis/genética , Factores de Riesgo de Enfermedad Cardiaca , Inflamación/genética , Ratones Noqueados para ApoE , Factores de Riesgo
2.
Nat Commun ; 11(1): 5520, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139725

RESUMEN

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Astenozoospermia/genética , Proteínas del Citoesqueleto/deficiencia , Situs Inversus/genética , Adolescente , Adulto , Animales , Astenozoospermia/patología , Axonema/ultraestructura , Sistemas CRISPR-Cas/genética , Cilios/metabolismo , Cilios/ultraestructura , Proteínas del Citoesqueleto/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Epidídimo/patología , Femenino , Flagelos/metabolismo , Flagelos/ultraestructura , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Planarias/citología , Planarias/genética , Planarias/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/patología , Situs Inversus/diagnóstico por imagen , Situs Inversus/patología , Motilidad Espermática/genética , Tomografía Computarizada por Rayos X , Secuenciación del Exoma
3.
Cell Metab ; 28(3): 463-475.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184486

RESUMEN

Enhanced glucose uptake and a switch to glycolysis are key traits of M1 macrophages, whereas enhanced fatty acid oxidation and oxidative phosphorylation are the main metabolic characteristics of M2 macrophages. Recent studies challenge this traditional view, indicating that glycolysis may also be critically important for M2 macrophage differentiation, based on experiments with 2-DG. Here we confirm the inhibitory effect of 2-DG on glycolysis, but also demonstrate that 2-DG impairs oxidative phosphorylation and significantly reduces 13C-labeled Krebs cycle metabolites and intracellular ATP levels. These metabolic derangements were associated with reduced JAK-STAT6 pathway activity and M2 differentiation marker expression. While glucose deprivation and glucose substitution with galactose effectively suppressed glycolytic activity, there was no effective suppression of oxidative phosphorylation, intracellular ATP levels, STAT6 phosphorylation, and M2 differentiation marker expression. These data indicate that glycolytic stimulation is not required for M2 macrophage differentiation as long as oxidative phosphorylation remains active.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Glucosa , Glucólisis/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Animales , Línea Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Glucosa/análogos & derivados , Glucosa/metabolismo , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Pacing Clin Electrophysiol ; 39(12): 1404-1409, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27807872

RESUMEN

Heart failure (HF) is associated with changes in cardiac substrate utilization and energy metabolism, including a decline in high-energy phosphate content, mitochondrial dysfunction, and phosphotransfer enzyme deficiency. A shift toward glucose metabolism was noted in the end stage of HF in animals, although HF in humans may not be associated with a shift toward predominant glucose utilization. Deficiencies of micronutrients are well-established causes of cardiomyopathy. Correction of these deficits can improve heart function. The genes governing the energy metabolism were predominantly underexpressed in nonischemic cardiomyopathy and hypertrophic cardiomyopathy but were overexpressed in ischemic cardiomyopathy. Cardiac resynchronization therapy (CRT) has been proven to increase cardiac efficiency without increasing myocardial oxygen consumption. Altered myocardial metabolism is normalized by CRT to improve ventricular function.


Asunto(s)
Terapia de Resincronización Cardíaca/métodos , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/fisiopatología , Corazón/fisiopatología , Enfermedades Metabólicas/prevención & control , Enfermedades Metabólicas/fisiopatología , Medicina Basada en la Evidencia , Femenino , Glucosa/metabolismo , Humanos , Masculino , Resultado del Tratamiento
5.
Cell Stem Cell ; 11(5): 596-606, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23122287

RESUMEN

Plasticity in energy metabolism allows stem cells to match the divergent demands of self-renewal and lineage specification. Beyond a role in energetic support, new evidence implicates nutrient-responsive metabolites as mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. Stem cell metabolism also offers a potential target for controlling tissue homeostasis and regeneration in aging and disease. In this Perspective, we cover recent progress establishing an emerging relationship between stem cell metabolism and cell fate control.


Asunto(s)
Diferenciación Celular , Células Madre/citología , Animales , Metabolismo Energético , Epigénesis Genética , Glucólisis , Humanos , Transducción de Señal , Células Madre/metabolismo
6.
Ann N Y Acad Sci ; 1254: 82-89, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22548573

RESUMEN

Engineering pluripotency through nuclear reprogramming and directing stem cells into defined lineages underscores cell fate plasticity. Acquisition of and departure from stemness are governed by genetic and epigenetic controllers, with modulation of energy metabolism and associated signaling increasingly implicated in cell identity determination. Transition from oxidative metabolism, typical of somatic tissues, into glycolysis is a prerequisite to fuel-proficient reprogramming, directing a differentiated cytotype back to the pluripotent state. The glycolytic metabotype supports the anabolic and catabolic requirements of pluripotent cell homeostasis. Conversely, redirection of pluripotency into defined lineages requires mitochondrial biogenesis and maturation of efficient oxidative energy generation and distribution networks to match demands. The vital function of bioenergetics in regulating stemness and lineage specification implicates a broader role for metabolic reprogramming in cell fate decisions and determinations of tissue regenerative potential.


Asunto(s)
Metabolismo Energético , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Animales , Desdiferenciación Celular , Linaje de la Célula , Transdiferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Regeneración , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias
7.
Anal Bioanal Chem ; 403(3): 697-706, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22427058

RESUMEN

A new method was here developed for the determination of (18)O-labeling ratios in metabolic oligophosphates, such as ATP, at different phosphoryl moieties (α-, ß-, and γ-ATP) using sensitive and rapid electrospray ionization mass spectrometry (ESI-MS). The ESI-MS-based method for monitoring of (18)O/(16)O exchange was validated with gas chromatography-mass spectrometry and 2D (31)P NMR correlation spectroscopy, the current standard methods in labeling studies. Significant correlation was found between isotopomer selective 2D (31)P NMR spectroscopy and isotopomer less selective ESI-MS method. Results demonstrate that ESI-MS provides a robust analytical platform for simultaneous determination of levels, (18)O-labeling kinetics and turnover rates of α-, ß-, and γ-phosphoryls in ATP molecule. Such method is advantageous for large scale dynamic phosphometabolomic profiling of metabolic networks and acquiring information on the status of probed cellular energetic system.


Asunto(s)
Adenosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Fosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Adenosina Trifosfato/análisis , Animales , Cromatografía de Gases y Espectrometría de Masas , Ratones , Miocardio/metabolismo , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Fosfatos/análisis , Isótopos de Fósforo/análisis , Isótopos de Fósforo/metabolismo , Ratas , Espectrometría de Masa por Ionización de Electrospray/economía
8.
PLoS One ; 7(2): e32737, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22393443

RESUMEN

BACKGROUND: The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. METHODS AND FINDINGS: We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. CONCLUSIONS: Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Mitocondrias/metabolismo , Amiloide/genética , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/metabolismo , Humanos , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Presenilina-1/genética , Factores de Tiempo
9.
Circ Res ; 110(4): 526-9, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22343555
10.
J Mol Cell Cardiol ; 52(2): 401-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21704043

RESUMEN

Orchestrated excitation-contraction coupling in heart muscle requires adequate spatial arrangement of systems responsible for ion movement and metabolite turnover. Co-localization of regulatory and transporting proteins into macromolecular complexes within an environment of microanatomical cell components raises intracellular diffusion barriers that hamper the mobility of metabolites and signaling molecules. Compared to substrate diffusion in the cytosol, diffusional restrictions underneath the sarcolemma are much larger and could impede ion and nucleotide movement by a factor of 10(3)-10(5). Diffusion barriers thus seclude metabolites within the submembrane space enabling rapid and vectorial effector targeting, yet hinder energy supply from the bulk cytosolic space implicating the necessity for a shunting transfer mechanism. Here, we address principles of membrane protein compartmentation, phosphotransfer enzyme-facilitated interdomain energy transfer, and nucleotide signal dynamics at the subsarcolemma-cytosol interface. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Asunto(s)
Microambiente Celular , Citosol/metabolismo , Miocitos Cardíacos/metabolismo , Nucleótidos/metabolismo , Sarcolema/metabolismo , Animales , Difusión , Metabolismo Energético/fisiología , Humanos , Espacio Intracelular/metabolismo , Canales Iónicos/metabolismo , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , Transducción de Señal
11.
J Physiol ; 589(Pt 21): 5193-211, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21878522

RESUMEN

Plasticity of the cellular bioenergetic system is fundamental to every organ function, stress adaptation and disease tolerance. Here, remodelling of phosphotransfer and substrate utilization networks in response to chronic creatine kinase (CK) deficiency, a hallmark of cardiovascular disease, has been revealed in transgenic mouse models lacking either cytosolic M-CK (M-CK(-/-)) or both M-CK and sarcomeric mitochondrial CK (M-CK/ScCKmit(-/-)) isoforms. The dynamic metabolomic signatures of these adaptations have also been defined. Tracking perturbations in metabolic dynamics with (18)O and (13)C isotopes and (31)P NMR and mass spectrometry demonstrate that hearts lacking M-CK have lower phosphocreatine (PCr) turnover but increased glucose-6-phosphate (G-6-P) turnover, glucose utilization and inorganic phosphate compartmentation with normal ATP γ-phosphoryl dynamics. Hearts lacking both M-CK and sarcomeric mitochondrial CK have diminished PCr turnover, total phosphotransfer capacity and intracellular energetic communication but increased dynamics of ß-phosphoryls of ADP/ATP, G-6-P and γ-/ß-phosphoryls of GTP, indicating redistribution of flux through adenylate kinase (AK), glycolytic and guanine nucleotide phosphotransfer circuits. Higher glycolytic and mitochondrial capacities and increased glucose tolerance contributed to metabolic resilience of M-CK/ScCKmit(-/-) mice. Multivariate analysis revealed unique metabolomic signatures for M-CK(-/-) and M-CK/ScCKmit(-/-) hearts suggesting that rearrangements in phosphotransfer and substrate utilization networks provide compensation for genetic CK deficiency. This new information highlights the significance of integrated CK-, AK-, guanine nucleotide- and glycolytic enzyme-catalysed phosphotransfer networks in supporting the adaptivity and robustness of the cellular energetic system.


Asunto(s)
Forma MB de la Creatina-Quinasa/deficiencia , Forma Mitocondrial de la Creatina-Quinasa/deficiencia , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Adenilato Quinasa/metabolismo , Animales , Forma MB de la Creatina-Quinasa/genética , Forma MB de la Creatina-Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/genética , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucólisis , Nucleótidos de Guanina/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo
12.
Cell Metab ; 14(2): 264-71, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21803296

RESUMEN

The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, stemness factor-mediated nuclear reprogramming reverted mitochondrial networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.


Asunto(s)
Reprogramación Celular , Metabolismo Energético , Glucólisis/fisiología , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Transporte de Electrón , Regulación del Desarrollo de la Expresión Génica , Glucosa/metabolismo , Metabolómica , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno
13.
PLoS One ; 6(4): e19300, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21556322

RESUMEN

BACKGROUND: Energetic and metabolic circuits that orchestrate cell differentiation are largely unknown. Adenylate kinase (AK) and associated AMP-activated protein kinase (AMPK) constitute a major metabolic signaling axis, yet the role of this system in guiding differentiation and lineage specification remains undefined. METHODS AND RESULTS: Cardiac stem cell differentiation is the earliest event in organogenesis, and a suitable model of developmental bioenergetics. Molecular profiling of embryonic stem cells during cardiogenesis revealed here a distinct expression pattern of adenylate kinase and AMPK genes that encode the AK-AMP-AMPK metabolic surveillance axis. Cardiac differentiation upregulated cytosolic AK1 isoform, doubled AMP-generating adenylate kinase activity, and increased AMP/ATP ratio. At cell cycle initiation, AK1 translocated into the nucleus and associated with centromeres during energy-consuming metaphase. Concomitantly, the cardiac AMP-signal receptor AMPKα2 was upregulated and redistributed to the nuclear compartment as signaling-competent phosphorylated p-AMPKα(Thr172). The cardiogenic growth factor TGF-ß promoted AK1 expression, while knockdown of AK1, AK2 and AK5 activities with siRNA or suppression by hyperglycemia disrupted cardiogenesis compromising mitochondrial and myofibrillar network formation and contractile performance. Induction of creatine kinase, the alternate phosphotransfer pathway, compensated for adenylate kinase-dependent energetic deficits. CONCLUSIONS: Developmental deployment and upregulation of the adenylate kinase/AMPK tandem provides a nucleocytosolic energetic and metabolic signaling vector integral to execution of stem cell cardiac differentiation. Targeted redistribution of the adenylate kinase-AMPK circuit associated with cell cycle and asymmetric cell division uncovers a regulator for cardiogenesis and heart tissue regeneration.


Asunto(s)
Adenilato Quinasa/metabolismo , Diferenciación Celular , Miocardio/citología , Transducción de Señal , Células Madre/citología , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Isoformas de Proteínas/metabolismo
14.
Transplantation ; 91(6): 615-23, 2011 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-21200364

RESUMEN

OBJECTIVE: To determine biological mechanisms involved in posttransplantation diabetes mellitus caused by the immunosuppressant tacrolimus (FK506). METHODS: INS-1 cells and isolated rat islets were incubated with vehicle or FK506 and harvested at 24-hr intervals. Cells were assessed for viability, apoptosis, proliferation, cell insulin secretion, and content. Gene expression studies by microarray analysis, quantitative polymerase chain reaction, and motifADE analysis of the microarray data identified potential FK506-mediated pathways and regulatory motifs. Mitochondrial functions, including cell respiration, mitochondrial content, and bioenergetics were assessed. RESULTS: Cell replication, viability, insulin secretion, oxygen consumption, and mitochondrial content were decreased (P<0.05) 1.2-, 1.27-, 1.77-, 1.32-, and 1.43-fold, respectively, after 48-hr FK506 treatment. Differences increased with time. FK506 (50 ng/mL) and cyclosporine A (800 ng/mL) had comparable effects. FK506 significantly decreased mitochondrial content and mitochondrial bioenergetics and showed a trend toward decreased oxygen consumption in isolated islets. Cell apoptosis and proliferation, mitochondrial DNA copy number, and ATP:ADP ratios were not significantly affected. Pathway analysis of microarray data showed FK506 modification of pathways involving ATP metabolism, membrane trafficking, and cytoskeleton remodeling. PGC1-α mRNA was down-regulated by FK506. MotifADE identified nuclear factor of activated T-cells, an important mediator of ß-cell survival and function, as a potential factor mediating both up- and down-regulation of gene expression. CONCLUSIONS: At pharmacologically relevant concentrations, FK506 decreases insulin secretion and reduces mitochondrial density and function without changing apoptosis rates, suggesting that posttransplantation diabetes induced by FK506 may be mediated by its effects on mitochondrial function.


Asunto(s)
Inmunosupresores/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Tacrolimus/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Ciclosporina/toxicidad , ADN Mitocondrial/análisis , Perfilación de la Expresión Génica , Insulina/metabolismo , Secreción de Insulina , Mitocondrias/fisiología , Ratas
15.
J Mol Cell Cardiol ; 48(4): 725-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20045004

RESUMEN

Decoding of the bioenergetic signature underlying embryonic stem cell cardiac differentiation has revealed a mandatory transformation of the metabolic infrastructure with prominent mitochondrial network expansion and a distinctive switch from glycolysis to oxidative phosphorylation. Here, we demonstrate that despite reduction in total glycolytic capacity, stem cell cardiogenesis engages a significant transcriptome, proteome, as well as enzymatic and topological rearrangement in the proximal, medial, and distal modules of the glycolytic pathway. Glycolytic restructuring was manifested by a shift in hexokinase (Hk) isoforms from Hk-2 to cardiac Hk-1, with intracellular and intermyofibrillar localization mapping mitochondrial network arrangement. Moreover, upregulation of cardiac-specific enolase 3, phosphofructokinase, and phosphoglucomutase and a marked increase in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) phosphotransfer activity, along with apparent post-translational modifications of GAPDH and phosphoglycerate kinase, were all distinctive for derived cardiomyocytes compared to the embryonic stem cell source. Lactate dehydrogenase (LDH) isoforms evolved towards LDH-2 and LDH-3, containing higher proportions of heart-specific subunits, and pyruvate dehydrogenase isoforms rearranged between E1alpha and E1beta, transitions favorable for substrate oxidation in mitochondria. Concomitantly, transcript levels of fetal pyruvate kinase isoform M2, aldolase 3, and transketolase, which shunt the glycolytic with pentose phosphate pathways, were reduced. Collectively, changes in glycolytic pathway modules indicate active redeployment, which would facilitate connectivity of the expanding mitochondrial network with ATP utilization sites. Thus, the delineated developmental dynamics of the glycolytic phosphotransfer network is integral to the remodeling of cellular energetic infrastructure underlying stem cell cardiogenesis.


Asunto(s)
Células Madre Embrionarias/citología , Animales , Diferenciación Celular , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Procesamiento de Imagen Asistido por Computador , L-Lactato Deshidrogenasa/metabolismo , Metabolómica , Ratones , Vía de Pentosa Fosfato , Fosfoglicerato Quinasa/metabolismo , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional
16.
Ann N Y Acad Sci ; 1147: 254-63, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19076447

RESUMEN

Differentiation of pluripotent low-energy requiring stem cells into the high-energy expenditure cardiac lineage requires coordination of genomic programming and energetic system maturation. Here, in a murine embryonic stem cell cardiac differentiation model, emergence of electrical and beating activity in cardiomyocytes developing within embryoid bodies was coupled with the establishment of the mitochondrial network and expansion of the creatine kinase (CK) phosphotransfer system. Stem cell cardiogenesis was characterized by increased total CK activity, an isoform shift manifested by amplified muscle CK-M mRNA levels and protein content, and the appearance of cardiac-specific CK-MB dimers. Treatment of differentiating stem cells with BMP2, a cardiogenic growth factor, promoted CK activity. CK-M clustered around developing myofibrils, sarcolemma, and the perinuclear compartment, whereas CK-B was tightly associated with myofibrillar alpha-actinin, forming wire-like structures extending from the nuclear compartment to the sarcolemma. Developmentally enhanced phosphotransfer enzyme-anchoring protein FHL2 coalesced the myofibrillar CK metabolic signaling circuit, providing an energetic continuum between mitochondria and the nascent contractile machinery. Thus, the evolving CK-catalyzed phosphotransfer network integrates mitochondrial energetics with cardiogenic programming, securing the emergence of energy-consuming cardiac functions in differentiating embryonic stem cells.


Asunto(s)
Diferenciación Celular , Creatina Quinasa/metabolismo , Mitocondrias/metabolismo , Miocardio/citología , Células Madre/citología , Animales , Humanos , Microscopía Confocal , Mitocondrias/enzimología
17.
J Mol Cell Cardiol ; 45(4): 523-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18835562

RESUMEN

Over 1000 patients have participated worldwide in clinical trials exploring the therapeutic value of bone marrow-derived cells in ischemic heart disease. Meta-analysis evaluation of this global effort indicates that adult stem cell therapy is in general safe, but yields a rather modest level of improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Although promising, the potential of translating adult stem cell-based therapy from bench to bedside has yet to be fully realized. Inter-trial and inter-patient variability contribute to disparity in the regenerative potential of transplanted stem cells with unpredictable efficacy on follow-up. Strategies that mimic the natural embryonic program for uniform recruitment of cardiogenic progenitors from adult sources are currently tested to secure consistent outcome. Guided cardiopoiesis has been implemented with mesenchymal stem cells obtained from bone marrow of healthy volunteers, using a cocktail of secreted proteins that recapitulate components of the endodermal secretome critical for cardiogenic induction of embryonic mesoderm. With appropriate validation of this newly derived cardiopoietic phenotype, the next generation of trials should achieve demonstrable benefit across patient populations.


Asunto(s)
Células Madre Adultas/metabolismo , Células de la Médula Ósea/metabolismo , Insuficiencia Cardíaca/terapia , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Trasplante de Células Madre/métodos , Enfermedad Crónica , Ensayos Clínicos como Asunto , Insuficiencia Cardíaca/metabolismo , Humanos , Metaanálisis como Asunto , Infarto del Miocardio/metabolismo
18.
J Am Soc Echocardiogr ; 21(8): 961-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18325735

RESUMEN

BACKGROUND: Capitalizing on mechanoenergetic coupling, we investigated whether strain echocardiography can noninvasively estimate the ratio of adenosine triphosphate (ATP) to adenosine diphosphate (ADP), a marker of energetic status during acute myocardial ischemia and reperfusion. METHODS: Twenty-eight pigs were divided into 7 groups (1 baseline, 4 ischemic, and 2 reperfusion). Ischemia was induced by left anterior descending coronary artery occlusion. Longitudinal systolic lengthening (SL) and postsystolic shortening (PSS) strain were measured by echocardiography. The ATP/ADP ratio was obtained from myocardial biopsies in the ischemic and control regions. RESULTS: SL and PSS strain and the ATP/ADP ratio progressively decreased (P < .05) with increased duration (12, 40, 120, and 200 minutes) of ischemia. A mathematical formula (ATP/ADP = -0.97 + 0.25 x PSS strain + 0.20 x SL strain) estimated best the ATP/ADP ratio (r = 0.94, P < .05). Reperfusion after 12 but not after 120 minutes of ischemia significantly improved the ATP/ADP ratio and decreased SL and PSS strain. CONCLUSIONS: Strain echocardiography closely reflected changes and enabled the noninvasive estimation of the ATP/ADP ratio. A higher ATP/ADP ratio is associated with functional improvement after reperfusion.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Ecocardiografía Doppler/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/metabolismo , Animales , Porcinos
19.
J Biol Chem ; 282(43): 31366-72, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17704060

RESUMEN

Matching blood flow to myocardial energy demand is vital for heart performance and recovery following ischemia. The molecular mechanisms responsible for transduction of myocardial energetic signals into reactive vasodilatation are, however, elusive. Adenylate kinase, associated with AMP signaling, is a sensitive reporter of the cellular energy state, yet the contribution of this phosphotransfer system in coupling myocardial metabolism with coronary flow has not been explored. Here, knock out of the major adenylate kinase isoform, AK1, disrupted the synchrony between inorganic phosphate P(i) turnover at ATP-consuming sites and gamma-ATP exchange at ATP synthesis sites, as revealed by (18)O-assisted (31)P NMR. This reduced energetic signal communication in the post-ischemic heart. AK1 gene deletion blunted vascular adenylate kinase phosphotransfer, compromised the contractility-coronary flow relationship, and precipitated inadequate coronary reflow following ischemia-reperfusion. Deficit in adenylate kinase activity abrogated AMP signal generation and reduced the vascular adenylate kinase/creatine kinase activity ratio essential for the response of metabolic sensors. The sarcolemma-associated splice variant AK1beta facilitated adenosine production, a function lost in the absence of adenylate kinase activity. Adenosine treatment bypassed AK1 deficiency and restored post-ischemic flow to wild-type levels, achieving phenotype rescue. AK1 phosphotransfer thus transduces stress signals into adequate vascular response, providing linkage between cell bioenergetics and coronary flow.


Asunto(s)
Adenilato Quinasa/fisiología , Isoenzimas/genética , Isquemia Miocárdica/enzimología , Miocardio/enzimología , Transducción de Señal , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Animales , Creatina Quinasa/metabolismo , Metabolismo Energético , Eliminación de Gen , Corazón/fisiopatología , Isoenzimas/deficiencia , Isoenzimas/metabolismo , Isoenzimas/fisiología , Ratones , Ratones Noqueados , Modelos Biológicos , Contracción Miocárdica , Isquemia Miocárdica/fisiopatología , Reperfusión Miocárdica , Miocardio/citología , Miocitos Cardíacos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Isótopos de Oxígeno/metabolismo , Fosfoproteínas/metabolismo , Isótopos de Fósforo/metabolismo
20.
Nat Clin Pract Cardiovasc Med ; 4 Suppl 1: S60-7, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17230217

RESUMEN

Cardiogenesis within embryos or associated with heart repair requires stem cell differentiation into energetically competent, contracting cardiomyocytes. While it is widely accepted that the coordination of genetic circuits with developmental bioenergetics is critical to phenotype specification, the metabolic mechanisms that drive cardiac transformation are largely unknown. Here, we aim to define the energetic requirements for and the metabolic microenvironment needed to support the cardiac differentiation of embryonic stem cells. We demonstrate that anaerobic glycolytic metabolism, while sufficient for embryonic stem cell homeostasis, must be transformed into the more efficient mitochondrial oxidative metabolism to secure cardiac specification and excitation-contraction coupling. This energetic switch was programmed by rearrangement of the metabolic transcriptome that encodes components of glycolysis, fatty acid oxidation, the Krebs cycle, and the electron transport chain. Modifying the copy number of regulators of mitochondrial fusion and fission resulted in mitochondrial maturation and network expansion, which in turn provided an energetic continuum to supply nascent sarcomeres. Disrupting respiratory chain function prevented mitochondrial organization and compromised the energetic infrastructure, causing deficient sarcomerogenesis and contractile malfunction. Thus, establishment of the mitochondrial system and engagement of oxidative metabolism are prerequisites for the differentiation of stem cells into a functional cardiac phenotype. Mitochondria-dependent energetic circuits are thus critical regulators of de novo cardiogenesis and targets for heart regeneration.


Asunto(s)
Células Madre Embrionarias/fisiología , Metabolismo Energético/fisiología , Mitocondrias Cardíacas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Ratones , Miocitos Cardíacos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...