Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Biol ; 10(11): 200221, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171067

RESUMEN

The centriole is a ninefold symmetrical structure found at the core of centrosomes and, as a basal body, at the base of cilia, whose conserved duplication is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue at the N-terminus of Ana2 to promote Ana2's loading to the site of procentriole formation. Four conserved serines in Ana2's STAN motif are then phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data indicate that the coiled-coil domain of Ana2 forms a tetramer but the structure of full-length Ana2 has not been solved. Here, we have employed hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) to uncover the conformational dynamics of Ana2, revealing the high flexibility of this protein with one rigid region. To determine the elusive nature of the interaction surfaces between Ana2 and Sas6, we have confirmed complex formation between the phosphomimetic form of Ana2 (Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-MS identifies short critical regions required for this interaction, which lie in the C-terminal parts of both proteins. Mutational studies confirmed the relevance of these regions for the Ana2-Sas6 interaction. The Sas6 site required for Ana2 binding is distinct from the site required for Sas6 to bind Gorab and Sas6 is able to bind both these protein partners simultaneously.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Espectrometría de Masas , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
2.
J Cell Biol ; 219(8)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32543652

RESUMEN

Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.


Asunto(s)
Centriolos/fisiología , Cilios/fisiología , Animales , Axonema/fisiología , Axonema/ultraestructura , Cilios/ultraestructura , Proteínas de Drosophila/fisiología , Femenino , Masculino , Mutación , Biogénesis de Organelos , Unión Proteica , Espermatogénesis/fisiología
3.
Nat Genet ; 50(7): 1021-1031, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29892014

RESUMEN

We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.


Asunto(s)
Centriolos/genética , Aparato de Golgi/genética , Proteínas de Transporte Vesicular/genética , Animales , Animales Modificados Genéticamente/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Cilios/genética , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética
4.
Open Biol ; 7(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29263250

RESUMEN

The conserved process of centriole duplication requires Plk4 kinase to recruit and promote interactions between Sas6 and Sas5/Ana2/STIL (respective nomenclature of worms/flies/humans). Plk4-mediated phosphorylation of Ana2/STIL in its conserved STAN motif has been shown to promote its interaction with Sas6. However, STAN motif phosphorylation is not required for recruitment of Ana2 to the centriole. Here we show that in Drosophila, Ana2 loads onto the site of procentriole formation ahead of Sas6 in a process that also requires Plk4. However, whereas Plk4 is first recruited to multiple sites around the ring of zone II at the periphery of the centriole, Ana2 is recruited to a single site in telophase before Plk4 becomes finally restricted to this same single site. When we over-ride the auto-destruction of Plk4, it remains localized to multiple sites in the outer ring of the centriole and, if catalytically active, recruits Ana2 to these sites. Thus, it is the active form of Plk4 that promotes Ana2's recruitment to the centriole. We now show that Plk4 phosphorylates Ana2 at a site other than the STAN motif, which lies in a conserved region we term the ANST (ANa2-STil) motif. Mutation of this site, S38, to a non-phosphorylatable residue prevents the procentriole loading of Ana2 and blocks centriole duplication. Thus the initiation of procentriole formation requires Plk4 to first phosphorylate a single serine residue in the ANST motif to promote Ana2's recruitment and, secondly, to phosphorylate four residues in the STAN motif enabling Ana2 to recruit Sas6. We discuss these findings in light of the multiple Plk4 phosphorylation sites on Ana2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
5.
Nat Cell Biol ; 18(1): 87-99, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595382

RESUMEN

Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila melanogaster/metabolismo , Mitosis/fisiología , Animales , Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Mol Biol Cell ; 26(8): 1491-508, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25694447

RESUMEN

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Neuronas/metabolismo , Actinas/metabolismo , Animales , Ratones , Cadenas Pesadas de Miosina/metabolismo
7.
Curr Biol ; 24(21): 2526-32, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25264260

RESUMEN

Centrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms. Although Plk4's centriolar partners and mechanisms that regulate its stability are known, its crucial substrates for centriole duplication have never been identified. Here we show that Drosophila Plk4 phosphorylates four conserved serines in the STAN motif of the core centriole protein Ana2 to enable it to bind and recruit its Sas6 partner. Ana2 and Sas6 normally load onto both mother and daughter centrioles immediately after their disengagement toward the end of mitosis to seed procentriole formation. Nonphosphorylatable Ana2 still localizes to the centriole but can no longer recruit Sas6 and centriole duplication fails. Thus, following centriole disengagement, recruitment of Ana2 and its phosphorylation by Plk4 are the earliest known events in centriole duplication to recruit Sas6 and thereby establish the architecture of the new procentriole engaged with its parent.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Drosophila/ultraestructura , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia
8.
PLoS One ; 9(9): e106112, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25203404

RESUMEN

Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Músculos/embriología , Tendones/embriología , Proteínas Supresoras de Tumor/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto , Proteínas de Drosophila/química , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Microtúbulos/metabolismo , Músculos/metabolismo , Tendones/metabolismo , Proteínas Supresoras de Tumor/química
9.
Methods Mol Biol ; 1170: 571-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24906338

RESUMEN

The ability to identify protein interactions is key to elucidating the molecular mechanisms of cellular processes, including mitosis and cell cycle regulation. Drosophila melanogaster, as a model system, provides powerful tools to study cell division using genetics, microscopy, and RNAi. Drosophila early embryos are highly enriched in mitotic protein complexes as their nuclei undergo 13 rounds of rapid, synchronous mitotic nuclear divisions in a syncytium during the first 2 h of development. Here, we describe simple methods for the affinity purification of protein complexes from transgenic fly embryos via protein A- and green fluorescent protein-tags fused to bait proteins of interest. This in vivo proteomics approach has allowed the identification of several known and novel mitotic protein interactions using mass spectrometry, and it expands the use of the Drosophila model in modern molecular biology.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Cromatografía de Afinidad/métodos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
10.
Curr Biol ; 23(22): 2245-2254, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24184099

RESUMEN

Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/ßTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/ßTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/ßTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/ßTrCP regulation as it operates in both soma and germline. As ßTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Treonina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Cell Biol ; 202(3): 479-94, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23918939

RESUMEN

Microtubule-based transport mediates the sorting and dispersal of many cellular components and pathogens. However, the mechanisms by which motor complexes are recruited to and regulated on different cargos remain poorly understood. Here we describe a large-scale biochemical screen for novel factors associated with RNA localization signals mediating minus end-directed mRNA transport during Drosophila development. We identified the protein Lissencephaly-1 (Lis1) and found that minus-end travel distances of localizing transcripts are dramatically reduced in lis1 mutant embryos. Surprisingly, given its well-documented role in regulating dynein mechanochemistry, we uncovered an important requirement for Lis1 in promoting the recruitment of dynein and its accessory complex dynactin to RNA localization complexes. Furthermore, we provide evidence that Lis1 levels regulate the overall association of dynein with dynactin. Our data therefore reveal a critical role for Lis1 within the mRNA localization machinery and suggest a model in which Lis1 facilitates motor complex association with cargos by promoting the interaction of dynein with dynactin.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero/metabolismo , Animales , Complejo Dinactina , Transporte de Proteínas , Transporte de ARN
12.
Proc Natl Acad Sci U S A ; 109(15): 5729-34, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451918

RESUMEN

Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting ß-tubulin, suggesting Mgr function is required for tubulin stability. Instability of ß-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic ß-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/metabolismo , Tubulina (Proteína)/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Secuencia Conservada , Drosophila melanogaster/citología , Humanos , Microtúbulos/metabolismo , Mutación/genética , Unión Proteica , Estabilidad Proteica , Proteolisis , Huso Acromático/metabolismo
13.
PLoS One ; 6(9): e24174, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912673

RESUMEN

Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report the identification of a novel Drosophila protein, which we call Kebab (kinetochore and EB1 associated basic protein), through in vitro expression screening for EB1-interacting proteins. Kebab fused to GFP shows a novel pattern of dynamic localisation in mitosis. It localises to kinetochores weakly in metaphase and accumulates progressively during anaphase. In telophase, it associates with microtubules in central-spindle and centrosomal regions. The localisation to kinetochores depends on microtubules. The protein has a domain most similar to the atypical CH domain of Ndc80, and a coiled-coil domain. The interaction with EB1 is mediated by two SxIP motifs but is not required for the localisation. Depletion of Kebab in cultured cells by RNA interference did not show obvious defects in mitotic progression or microtubule organisation. Generation of mutants lacking the kebab gene indicated that Kebab is dispensable for viability and fertility.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Mitosis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anafase , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Humanos , Masculino , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia , Telofase
14.
Nature ; 467(7316): 714-8, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20852615

RESUMEN

Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Centrosoma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
15.
EMBO Rep ; 6(11): 1058-63, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16170306

RESUMEN

Conventional centrosomes are absent from a female meiotic spindle in many animals. Instead, chromosomes drive spindle assembly, but the molecular mechanism of this acentrosomal spindle formation is not well understood. We have screened female sterile mutations for defects in acentrosomal spindle formation in Drosophila female meiosis. One of them, remnants (rem), disrupted bipolar spindle morphology and chromosome alignment in non-activated oocytes. We found that rem encodes a conserved subunit of Cdc2 (Cks30A). As Drosophila oocytes arrest in metaphase I, the defect represents a new Cks function before metaphase-anaphase transition. In addition, we found that the essential pole components, Msps and D-TACC, were often mislocalized to the equator, which may explain part of the spindle defect. We showed that the second cks gene cks85A, in contrast, has an important role in mitosis. In conclusion, this study describes a new pre-anaphase role for a Cks in acentrosomal meiotic spindle formation.


Asunto(s)
Anafase/fisiología , Quinasas Ciclina-Dependientes/genética , Drosophila/fisiología , Meiosis/fisiología , Huso Acromático/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Cromosomas/metabolismo , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Fenotipo , ARN/metabolismo , Factores Sexuales , Huso Acromático/metabolismo
16.
J Cell Sci ; 118(Pt 16): 3781-90, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16105886

RESUMEN

CLIP-170 was the first microtubule plus-end-tracking protein to be described, and is implicated in the regulation of microtubule plus-ends and their interaction with other cellular structures. Here, we have studied the cell-cycle-dependent mechanisms which localise the sole Drosophila melanogaster homologue CLIP-190. During mitosis, CLIP-190 localises to unattached kinetochores independently of spindle-checkpoint activation. This localisation depends on the dynein-dynactin complex and Lis1 which also localise to unattached kinetochores. Further analysis revealed a hierarchical dependency between the proteins with respect to their kinetochore localisation. An inhibitor study also suggested that the motor activity of dynein is required for the removal of CLIP-190 from attached kinetochores. In addition, we found that CLIP-190 association to microtubule plus-ends is regulated during the cell cycle. Microtubule plus-end association is strong in interphase and greatly attenuated during mitosis. Another microtubule plus-end tracking protein, EB1, directly interacts with the CAP-Gly domain of CLIP-190 and is required to localise CLIP-190 at microtubule plus-ends. These results indicate distinct molecular requirements for CLIP-190 localisation to unattached kinetochores in mitosis and microtubule ends in interphase.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Células Cultivadas , Drosophila , Proteínas de Drosophila , Complejo Dinactina , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Genes cdc/fisiología , Interfase/fisiología , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...