Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CRISPR J ; 5(2): 181-186, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35333620

RESUMEN

CRISPR-Cas9 is a genome-editing technique that has been widely adopted thanks to its simplicity, efficiency, and broad application potential. Due to its advantages and pervasive use, there have been attempts to include this method in the existing curricula for students majoring in various disciplines of biology. In this perspective, we summarize the existing CRISPR-Cas courses that harness a well-established model organism: baker's yeast, Saccharomyces cerevisiae. As an example, we present a detailed description of a fully hands-on, flexible, robust, and cost-efficient practical CRISPR-Cas9 course, where students participate in yeast genome editing at every stage-from the bioinformatic design of single-guide RNA, through molecular cloning and yeast transformation, to the final confirmation of the introduced mutation. Finally, we emphasize that in addition to providing experimental skills and theoretical knowledge, the practical courses on CRISPR-Cas represent ideal platforms for discussing the ethical implications of the democratization of biology.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Biología , Sistemas CRISPR-Cas/genética , Curriculum , Edición Génica/métodos , Humanos , Saccharomyces cerevisiae/genética
2.
Biomolecules ; 10(8)2020 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824374

RESUMEN

Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.


Asunto(s)
ADN Mitocondrial/genética , Proteínas HMGB/metabolismo , Enfermedades Mitocondriales/genética , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Proteínas HMGB/química , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Unión Proteica
3.
FEMS Yeast Res ; 19(5)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247640

RESUMEN

The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.


Asunto(s)
Gotas Lipídicas/química , Fosfatidilgliceroles/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Fosfolipasas de Tipo C/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Curr Genet ; 65(2): 539-560, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30456648

RESUMEN

The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.


Asunto(s)
Genoma Fúngico , Genómica , Micosis/microbiología , Infecciones Oportunistas/microbiología , Saccharomycetales/genética , Antifúngicos/farmacología , Biología Computacional/métodos , Genómica/métodos , Humanos , Pruebas de Sensibilidad Microbiana , Anotación de Secuencia Molecular , Familia de Multigenes , Fenotipo , Filogenia , Recombinación Genética , Saccharomycetales/clasificación , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/patogenicidad , Factores de Virulencia
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1331-1344, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29958934

RESUMEN

Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.


Asunto(s)
Hidrolasas/genética , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Empalme Alternativo , Hidrolasas/metabolismo , Intrones , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Bio Protoc ; 7(15): e2428, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541153

RESUMEN

Rhodamine 6G is a highly fluorescent dye often used to determine the transport activity of yeast membrane efflux pumps. The ATP-binding cassette transporter KlPdr5p confers resistance to several unrelated drugs in Kluyveromyces lactis. KlPdr5p also extrudes rhodamine 6G (R6G) from intact yeast cells in an energy-dependent manner. Incubation of yeast cells in the presence of 2-deoxy-D-glucose (inhibitor of glycolysis) and R6G (mitochondrial ATPase inhibitor) leads to marked depletion of intracellular ATP pool ( Kolaczkowski et al., 1996 ). An active KlPdr5p mediated extrusion of R6G from intact yeast cells can be followed by direct measurement of the fluorescence of extruded R6G in the assay buffer.

7.
PLoS One ; 11(10): e0164175, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711131

RESUMEN

Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.


Asunto(s)
Ionóforos/farmacología , Nigericina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Valinomicina/farmacología , Ontología de Genes , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
8.
Microbiol Res ; 174: 17-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25946325

RESUMEN

In yeasts, the PDR16 gene encodes a phosphatidylinositol transfer protein which belongs to the Sec14 homologue (SFH) family and localizes to lipid droplets, microsomes and at the cell periphery. The loss of its function alters the lipid droplet metabolism and plasma membrane properties, and renders yeast cells more sensitive to azole antimycotics. In this study, the entire chromosomal CgPDR16 ORF was replaced by the ScURA3 gene both in azole sensitive and azole resistant strains of Candida glabrata bearing a gain-of-function mutation in the CgPDR1 gene, and their responses to different stresses were assessed. The CgPDR16 deletion was found to sensitize the mutant strains to azole antifungals without changes in their osmo- and halotolerance. Fluconazole treated pdr16Δ mutant strains displayed a reduced expression of several genes involved in azole tolerance. The gain-of-function CgPDR1 allele as well as the cycloheximide and hydrogen peroxide treatments of cells enhanced the expression of the CgPDR16 gene. The results indicate that CgPDR16 belongs to genes whose expression is induced by chemical and oxidative stresses. The loss of its function can attenuate the expression of drug efflux pump encoding genes that might also contribute to the decreased azole tolerance in pdr16Δ mutant cells.


Asunto(s)
Antifúngicos/metabolismo , Candida glabrata/efectos de los fármacos , Farmacorresistencia Fúngica , Fluconazol/metabolismo , Eliminación de Gen , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estrés Fisiológico , Candida glabrata/genética , Candida glabrata/fisiología , Perfilación de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Proteínas de Transferencia de Fosfolípidos/genética
9.
Yeast ; 30(10): 403-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23939632

RESUMEN

The PDR16 gene encodes the homologue of Sec14p, participating in protein secretion, regulation of lipid synthesis and turnover in vivo and acting as a phosphatidylinositol transfer protein in vitro. This gene is also involved in the regulation of multidrug resistance in Saccharomyces cerevisiae and pathogenic yeasts. Here we report the results of functional analysis of the CgPDR16 gene, whose mutation has been previously shown to enhance fluconazole sensitivity in Candida glabrata mutant cells. We have cloned the CgPDR16 gene, which was able to complement the pdr16Δ mutation in both C. glabrata and S. cerevisiae. Along with fluconazole, the pdr16Δ mutation resulted in increased susceptibility of mutant cells to several azole antifungals without changes in sensitivity to polyene antibiotics, cycloheximide, NQO, 5-fluorocytosine and oxidants inducing the intracellular formation of reactive oxygen species. The susceptibility of the pdr16Δ mutant strain to itraconazole and 5-fluorocytosine was enhanced by CTBT [7-chlorotetrazolo(5,1-c)benzo(1,2,4)triazine] inducing oxidative stress. The pdr16Δ mutation increased the accumulation of rhodamine 6G in mutant cells, decreased the level of itraconazole resistance caused by gain-of-function mutations in the CgPDR1 gene, and reduced cell surface hydrophobicity and biofilm production. These results point to the pleiotropic phenotype of the pdr16Δ mutant and support the role of the CgPDR16 gene in the control of drug susceptibility and virulence in the pathogenic C. glabrata.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Biopelículas/crecimiento & desarrollo , Candida glabrata/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Clonación Molecular , ADN de Hongos/genética , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Estrés Oxidativo/efectos de los fármacos , Proteínas de Transferencia de Fosfolípidos/genética , Polienos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rodaminas/farmacología , Análisis de Secuencia de ADN , Triazinas/farmacología , Factores de Virulencia
10.
Microbiol Res ; 168(3): 147-52, 2013 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23176778

RESUMEN

CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) is an antifungal and chemosensitizing agent that induces oxidative stress in yeast and filamentous fungi and enhances the cytotoxic activity of 5-fluorocytosine and azole antimycotics. This study reports the effect of CTBT on bacterial cells. CTBT inhibited the growth of both Gram-positive and Gram-negative bacterial species. The action of CTBT was bactericidal. In Escherichia coli, CTBT induced an increased formation of reactive oxygen species (ROS), as determined with a ROS specific probe 2',7'-dichlorodihydrofluorescein diacetate. In zone inhibition assays, bacterial cells were more sensitive to CTBT compared with paraquat, menadione and hydrogen peroxide. The deletion of oxidative stress related genes resulted in increased susceptibility of E. coli mutant strains to CTBT treatment. Exogenous antioxidants such as ascorbic acid, cysteine and glutathione exhibited a protective effect against the growth inhibition induced by CTBT. CTBT may be a useful tool in the studies of ROS generation, oxidant sensing and oxidative stress response in different bacterial species.


Asunto(s)
Antibacterianos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Triazinas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Oxidantes/toxicidad
11.
FEMS Yeast Res ; 12(8): 958-68, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22909133

RESUMEN

7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) is an antifungal agent that induces oxidative stress and enhances the activity of other antifungals with different modes of action. A genome-wide screening of Saccharomyces cerevisiae genomic library in the high-copy-number plasmid revealed three genes, YAP1, PDE2, and STB3, which increased the CTBT tolerance of the parental strain. The YAP1 gene is known to activate many genes in response to oxidants. The PDE2 and STB3 genes encode the high-affinity cAMP phosphodiesterase and the transcription factor recognizing the ribosomal RNA processing element in promoter sequences, respectively. The protective effects of their overexpression against CTBT toxicity was observed in the absence of certain proteins involved in stress responses, cell wall integrity signaling, and chromatin remodeling. The enhanced CTBT tolerance of the YAP1, PDE2, and STB3 transformants was a consequence of their high antioxidant enzyme activities at the beginning of CTBT treatment in comparison with that of the parental strain, for that they inactivated the CTBT-induced reactive oxygen species. These results point to the complex interplay among the oxidant sensing, cAMP-protein kinase A signaling, and transcription reprogramming of yeast cells, leading to their better adaptation to the stress imposed by CTBT.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transactivadores/genética , Factores de Transcripción/genética , Triazinas/farmacología , Antifúngicos/farmacología , Reprogramación Celular , ADN de Hongos/genética , Tolerancia a Medicamentos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
12.
FEMS Microbiol Lett ; 328(2): 138-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22212016

RESUMEN

CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) causes intracellular superoxide production and oxidative stress and enhances the susceptibility of Saccharomyces cerevisiae, Candida albicans, and C. glabrata cells to cycloheximide, 5-fluorocytosine, and azole antimycotic drugs. Here, we demonstrate the antifungal activity of CTBT against 14 tested filamentous fungi. CTBT prevented spore germination and mycelial proliferation of Aspergillus niger and the pathogenic Aspergillus fumigatus. The action of CTBT is fungicidal. CTBT increased the formation of reactive oxygen species in fungal mycelium as detected by 2',7'-dichlorodihydrofluorescein diacetate and reduced the radial growth of colonies in a dose-dependent manner. Co-application of CTBT and itraconazole led to complete inhibition of fungal growth at dosages lower than the chemicals alone. Antifungal and chemosensitizing activities of CTBT in filamentous fungi may be useful in combination treatments of infections caused by drug-resistant fungal pathogens.


Asunto(s)
Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Triazinas/farmacología , Antifúngicos/farmacología , Recuento de Colonia Microbiana , Medios de Cultivo/metabolismo , Hifa/efectos de los fármacos , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo , Esporas Fúngicas/crecimiento & desarrollo
13.
FEMS Yeast Res ; 11(2): 155-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21129149

RESUMEN

In the pathogenic yeast Candida glabrata, multidrug resistance is associated with the overexpression of drug efflux pumps caused by gain-of-function mutations in the CgPDR1 gene. CgPdr1p transcription factor, which activates the expression of several drug efflux transporter genes, is considered to be a promising target for compounds sensitizing the multidrug-resistant yeast cells. Here, we describe a cell-based screening system for detecting the inhibitory activity of compounds interfering with the CgPdr1p function in a heterologous genetic background of the hypersensitive Saccharomyces cerevisiae mutant strain. The screening is based on the ability to abrogate the growth defect of cells suffering from the galactose-induced and CgPdr1p-driven overexpression of a dominant lethal pma1(D378N) allele placed under the control of the ScPDR5 promoter. The system allows rapid identification of multidrug resistance reversal agents inhibiting the CgPdr1p activity or loss-of-function Cgpdr1 mutations, and is amenable to high-throughput screening on solid or liquid media.


Asunto(s)
Candida glabrata/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Candida glabrata/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Ensayos Analíticos de Alto Rendimiento , Proteínas de Transporte de Membrana/genética , Viabilidad Microbiana/efectos de los fármacos , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Yeast ; 27(5): 277-84, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20146400

RESUMEN

The PDR3 gene encodes one of the main transcriptional activators involved in the control of multidrug resistance in the yeast Saccharomyces cerevisiae. Recently, it has been demonstrated that a specific D853Y mutation results in the loss of transactivation activity of Pdr3p and its conversion to multicopy suppressor of multidrug resistance. In this study, the Asp853 in Pdr3p was replaced by eight different amino acids and the function of mutated proteins was analysed. Different levels of complementation of cycloheximide hypersensitivity and expression of autoregulated PDR3 and its PDR5 target in the pdr1Deltapdr3Delta mutant strain, ranging from that of the wild-type to loss-of-function alleles, were observed in pdr3 mutants containing Pro, Glu, Arg, Asn, Ser, Leu, Phe, Ile or Tyr instead of Asp853 in Pdr3p. The introduction of the D853Y mutation into gain-of-function Pdr3p suppressed the transcription of the PDR3 and PDR5 genes and reduced both the rhodamine 6G efflux rate and the drug resistance level in corresponding double mutants. The results indicate that, while Pdr3p can tolerate several substitutions of Asp853, the occurrence of a hydrophobic amino acid at this position has an adverse effect on its function.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Alelos , Sustitución de Aminoácidos , Antifúngicos/farmacología , Cicloheximida/farmacología , Proteínas de Unión al ADN/química , Farmacorresistencia Fúngica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Transformación Genética
15.
Int J Antimicrob Agents ; 33(6): 574-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19196495

RESUMEN

Candida glabrata is an important human pathogen that is naturally less susceptible to antimycotics compared with Candida albicans. Ten unmatched C. glabrata clinical isolates were selected from a collection of isolates exhibiting decreased susceptibilities to azole antifungals. Overexpression of the CgPDR1 gene, encoding the main multidrug resistance transcription factor, and its target genes CgCDR1 and CgCDR2, coding for drug efflux transporters, was observed in six fluconazole-resistant isolates. Sequence analysis of the polymerase chain reaction (PCR)-amplified DNA fragments of each isolate's CgPDR1 gene was used to identify two novel L347F and H576Y mutations in CgPdr1p. These proved to be responsible for fluconazole resistance in transformants of the C. glabrata pdr1Delta mutant strain. Five isolates harbouring the H576Y mutation also contained the mutation E502V in CgErg11p 14C-lanosterol-demethylase. Heterologous expression of the CgERG11 mutant allele did not provide evidence for its involvement in azole resistance. In four fluconazole-sensitive isolates that were itraconazole-resistant, slightly enhanced CgCDR2 expression was observed. No upregulation of the CgERG11 gene was observed in any of the ten isolates. The results demonstrate that decreased susceptibilities of C. glabrata clinical isolates to azole antifungals mainly results from gain-of-function mutations in the gene encoding the CgPdr1p transcription factor.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/genética , Candida glabrata/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Mutación Missense , Candida albicans/efectos de los fármacos , Candida albicans/aislamiento & purificación , Candida glabrata/efectos de los fármacos , Candida glabrata/aislamiento & purificación , ADN de Hongos/química , ADN de Hongos/genética , Femenino , Regulación Fúngica de la Expresión Génica , Humanos , Masculino , Análisis de Secuencia de ADN , Eslovaquia
16.
Curr Genet ; 53(5): 313-22, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18343926

RESUMEN

Cardiolipin and its precursor phosphatidylglycerol are two anionic phospholipids that are essential for the biogenesis of functional mitochondria. To assess their role in mitochondrial and cellular functions in the pathogenic yeast Candida glabrata, a functional characterization of the CgPGS1 gene encoding the phosphatidylglycerolphosphate synthase has been carried out. Transposon insertion mutation in CgPGS1 resulted in the loss of phosphatidylglycerolphosphate synthase activity and in deficiency of both phosphatidylglycerol and cardiolipin. The Cgpgs1 Delta mutant cells displayed reduced amounts of cytochrome b and cytochrome a, and had impaired growth on minimal media containing non-fermentable carbon and energy sources. They did not grow at elevated temperatures and failed to form colonies after induction of mitochondrial DNA deletions. The mutant cells also displayed a decreased susceptibility to fluconazole, ketoconazole, clotrimazole, voriconazole and posaconazole. In the Cgpgs1 Delta mutant, a quantitative real time PCR revealed enhanced mRNA levels for multidrug resistance associated genes such as CgPDR1 encoding transcriptional activator and CgCDR1, CgPDH1 and CgSNQ2 coding for drug efflux transporters. These results indicate that CgPGS1 and anionic phospholipids are required for optimal mitochondrial functions and maintenance of yeast susceptibility to azole antifungals.


Asunto(s)
Candida glabrata/genética , Farmacorresistencia Fúngica/genética , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Candida glabrata/metabolismo , Clonación Molecular , Ligamiento Genético , Genotipo , Homeostasis/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Mitocondrias/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
17.
FEMS Yeast Res ; 8(3): 414-24, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18205807

RESUMEN

The PDR5 gene encodes the major multidrug resistance efflux pump in Saccharomyces cerevisiae. In drug-resistant cells, the hyperactive Pdr1p or Pdr3p transcriptional activators are responsible for the PDR5 upregulation. In this work, it is shown that the RPD3 gene encoding the histone deacetylase that functions as a transcriptional corepressor at many promoters and the ROM2 gene coding for the GDP/GTP exchange protein for Rho1p and Rho2p participating in signal transduction pathways are required for PDR5 transcription under cycloheximide-induced and noninduced conditions. Transposon insertion mutations in ROM2, RPD3 and some other genes encoding specific subunits of the large Rpd3L protein complex resulted in enhanced susceptibility of mutant cells to antifungals. In the rpd3 Delta and rom2 Delta mutants, the level of PDR5 mRNA and the rate of rhodamine 6G efflux were reduced. Unlike rpd3 Delta, in rom2 Delta mutant cells the drug hypersensitivity and the defect in PDR5 expression were suppressed by PDR1 or PDR3 overexpressed from heterologous promoters and by the hyperactive pdr3-9 mutant allele. The results indicate that Rpd3p histone deacetylase participating in chromatin remodeling and Rom2p participating in the cell integrity pathway are involved in the control of PDR5 expression and modulation of multidrug resistance in yeast.


Asunto(s)
Farmacorresistencia Fúngica Múltiple , Factores de Intercambio de Guanina Nucleótido/fisiología , Histona Desacetilasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/farmacología , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Histona Desacetilasas/genética , ARN Mensajero/análisis , Rodaminas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
18.
FEMS Yeast Res ; 7(2): 254-64, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17266731

RESUMEN

The PDR1 and PDR3 genes encode the main transcription activators involved in the control of multidrug resistance in Saccharomyces cerevisiae. To identify the amino acids essential for Pdr3p function, the loss-of-function pdr3 mutants were isolated and characterized. Two plasmid-borne pdr3 alleles, pdr3-E902Ter and pdr3-D853Y, which failed to complement drug hypersensitivity in the Deltapdr1Deltapdr3 mutant strain, were isolated. The E902Ter mutation resulted in a truncated protein lacking the C-terminal activation domain. The D853Y mutation allowed the expression of entire Pdr3p, but its transactivation function was lost. When overexpressed from the P(GAL1) promoter, the two mutant alleles increased the sensitivity of wild-type cells to cycloheximide and fluconazole and suppressed drug resistance in gain-of-function pdr1 and pdr3 mutant strains. The drug-sensitizing effect of overexpressed loss-of-function pdr3 mutant alleles correlated with their ability to suppress PDR5 transcription and rhodamine 6G accumulation in transformants of the wild-type and Deltapdr1 mutant strains. These results demonstrate that amino acid residue Asp853 is essential for Pdr3p function, and indicate that specific loss-of-function pdr3 mutations can convert the Pdr3p transcription activator to a multicopy suppressor of multidrug resistance.


Asunto(s)
Antifúngicos/farmacología , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple , Mutación , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cicloheximida/farmacología , Proteínas de Unión al ADN/genética , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Proteínas Represoras/genética , Rodaminas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...